【題目】已知圓,,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線(xiàn).

(1)求曲線(xiàn)的方程;

(2)過(guò)點(diǎn) 作圓的兩條切線(xiàn),切點(diǎn)分別為,求直線(xiàn)被曲線(xiàn)截得的弦的中點(diǎn)坐標(biāo).

【答案】(1)(2)

【解析】

(1)已知?jiǎng)訄AP與圓M外切,與圓N內(nèi)切,利用圓心距和半徑的關(guān)系得到PMPN的距離之和為定值,符合橢圓定義,從而求得曲線(xiàn)的方程

(2)先求直線(xiàn)AB,聯(lián)立直線(xiàn)與橢圓方程,再根據(jù)一元二次方程根與系數(shù)的關(guān)系,求得相交弦的中點(diǎn)坐標(biāo).

1)由已知得圓M的圓心為M(-1,0),半徑;N的圓心為N(1,0),半徑.

設(shè)動(dòng)圓P的圓心為P(x,y),半徑為R.因?yàn)閳AP與圓M外切并且與圓N內(nèi)切,所以

.

根據(jù)橢圓的定義可知,曲線(xiàn)C是以M,N為左、右焦點(diǎn)的橢圓(左長(zhǎng)軸端點(diǎn)除外),

,橢圓方程為.

(2)過(guò)點(diǎn) 作圓的兩條切線(xiàn),切點(diǎn)分別為,如下圖:

,以為圓心,為半徑的圓與圓公共弦所在直線(xiàn)AB,

聯(lián)立曲線(xiàn)與直線(xiàn)可得,

設(shè)交點(diǎn),則,

所以中點(diǎn)的橫坐標(biāo)為,代入得中點(diǎn)的縱坐標(biāo)為,

所求中點(diǎn)坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)在點(diǎn)處的切線(xiàn)方程;

(2)若存在,對(duì)任意,使得恒成立,求實(shí)數(shù)的取值范圍;

(3)已知函數(shù)區(qū)間上的最小值為1,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】銷(xiāo)售某種活蝦,根據(jù)以往的銷(xiāo)售情況,按日需量x(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500] 進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種活蝦經(jīng)銷(xiāo)商進(jìn)價(jià)成本為每公斤15,當(dāng)天進(jìn)貨當(dāng)天以每公斤20元進(jìn)行銷(xiāo)售當(dāng)天未售出的須全部以每公斤10元賣(mài)給冷凍庫(kù).某水產(chǎn)品經(jīng)銷(xiāo)商某天購(gòu)進(jìn)了300公斤這種活蝦,設(shè)當(dāng)天利潤(rùn)為Y元.

(1)Y關(guān)于x的函數(shù)關(guān)系式;

(2)結(jié)合直方圖估計(jì)利潤(rùn)Y不小于300元的概率

(3)在直方圖的日需量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,日需量落入該區(qū)間的頻率作為日需量取該區(qū)間中點(diǎn)值的概率,求Y的平均估計(jì)值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求的值域;

2)求函數(shù)的最小正周期及函數(shù)的單調(diào)區(qū)間;

3)將函數(shù)的圖像向右平移個(gè)單位后,再將得到的圖像上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)保持不變,得到函數(shù)的圖像,求函數(shù)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)今年1月,2月,3月患某種傳染病的人數(shù)分別為4248,52.為了預(yù)測(cè)以后各月的患病人數(shù),甲選擇了模型,乙選擇了模型,其中為患病人數(shù),為月份數(shù),a,b,cp,q,r都是常數(shù).結(jié)果4月,5月,6月份的患病人數(shù)分別為5457,58.

1)求a,bc,p,q,r的值;

2)你認(rèn)為誰(shuí)選擇的模型好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四個(gè)小球,分別寫(xiě)有文、明、中、國(guó)四個(gè)字,有放回地從中任取一個(gè)小球,直到”“國(guó)兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生03之間取整數(shù)值的隨機(jī)數(shù),分別用0,12,3代表文、明、中、國(guó)這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232 321 230 023 123 021 132 220 001

231 130 133 231 013 320 122 103 233

由此可以估計(jì),恰好第三次就停止的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面是邊長(zhǎng)為3的正方形,平面,,與平面所成的角為.

(1)求證:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題,其中所有正確命題的序號(hào)是__________

①拋物線(xiàn)的準(zhǔn)線(xiàn)方程為;

②過(guò)點(diǎn)作與拋物線(xiàn)只有一個(gè)公共點(diǎn)的直線(xiàn)僅有1條;

是拋物線(xiàn)上一動(dòng)點(diǎn),以為圓心作與拋物線(xiàn)準(zhǔn)線(xiàn)相切的圓,則此圓一定過(guò)定點(diǎn).

④拋物線(xiàn)上到直線(xiàn)距離最短的點(diǎn)的坐標(biāo)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)數(shù)函數(shù))和指數(shù)函數(shù))互為反函數(shù).已知函數(shù),其反函數(shù)為

1)若函數(shù)定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

2)若為定義在上的奇函數(shù),且時(shí),.求的解析式.

3)定義在上的函數(shù),如果滿(mǎn)足:對(duì)任意的,存在常數(shù),都有成立,則稱(chēng)函數(shù)上的有界函數(shù),其中為函數(shù)的上界.若函數(shù),當(dāng)時(shí),探究函數(shù)上是否存在上界,若存在求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案