已知橢圓Γ:
(a>b>0)經過D(2,0),E(1,
)兩點.
(1)求橢圓Γ的方程;
(2)若直線
與橢圓Γ交于不同兩點A,B,點G是線段AB中點,點O是坐標原點,設射線OG交Γ于點Q,且
.
①證明:
②求△AOB的面積.
(1)
;(2)
試題分析:(1)由已知M是PD的中點,利用P點在圓上,可以求出M的點軌跡方程為
;(2)點Q在(1)中的橢圓上,G是OQ的中點,利用直線與橢圓的關系及中點坐標公式,即可找到k與m的關系,并進一步求出三角形AOB的面積.
試題解析:(1)由題意,得
,解得
∴軌跡Γ的方程為
; 5分
(2)①令
由
消去y
得
6分
∴
,即
(1)
∴
又由中點坐標公式,得
將
代入橢圓方程,有
化簡得:
(2) 9分
②由(1)(2)得
且
(3)
在△AOB中,
(4) 12分
∴由(2)(3)(4)可得
∴△AOB的面積是
13分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
.
(1)若原點到直線
的距離為
,求橢圓的方程;
(2)設過橢圓的右焦點且傾斜角為
的直線和橢圓交于A,B兩點.
當
,求b的值;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點,G,H分別是線段ON,CN的中點.
(1)證明:直線EG與FH的交點L在橢圓W:
上;
(2)設直線l:
與橢圓W:
有兩個不同的交點P,Q,直線l與矩形ABCD有兩個不同的交點S,T,求
的最大值及取得最大值時m的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左、右頂點分別是
、
,左、右焦點分別是
、
.若
,
,
成等比數(shù)列,求此橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知動圓經過點A(3,0),且和直線x+3=0相切,
(1)求動圓圓心的軌跡C的方程;
(2)已知曲線C上一點M,且|AM|=5,求M點的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
若一動點M與定直線l:x=
及定點A(5,0)的距離比是4:5.
(1)求動點M的軌跡C的方程;
(2)設所求軌跡C上有點P與兩定點A和B(-5,0)的連線互相垂直,求|PA|•|PB|的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
自A(4,0)引圓x2+y2=4的割線ABC,求弦BC中點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知點M(
,0),橢圓
+y
2=1與直線y=k(x+
)交于點A、B,則△ABM的周長為( )
A.4 B.8 C.12 D.16
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
為橢圓
的兩個焦點,過
的直線交橢圓于兩點,
,
則
( )
查看答案和解析>>