【題目】給出下列結論:
①在△ABC中,sinA>sinBa>b;
②常數數列既是等差數列又是等比數列;
③數列{an}的通項公式為 ,若{an}為遞增數列,則k∈(﹣∞,2];
④△ABC的內角A,B,C滿足sinA:sinB:sinC=3:5:7,則△ABC為銳角三角形.其中正確結論的個數為( )
A.0
B.1
C.2
D.3
科目:高中數學 來源: 題型:
【題目】已知t= (u>1),且關于t的不等式t2﹣8t+m+18<0有解,則實數m的取值范圍是( )
A.(﹣∞,﹣3)
B.(﹣3,+∞)
C.(3,+∞)
D.(﹣∞,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}和等比數列{bn},其中{an}的公差不為0.設Sn是數列{an}的前n項和.若a1 , a2 , a5是數列{bn}的前3項,且S4=16.
(1)求數列{an}和{bn}的通項公式;
(2)若數列{ }為等差數列,求實數t;
(3)構造數列a1 , b1 , a2 , b1 , b2 , a3 , b1 , b2 , b3 , …,ak , b1 , b2 , …,bk , …,若該數列前n項和Tn=1821,求n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中點.
(1)證明:B1M⊥平面ABM;
(2)求異面直線A1M和C1D1所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】兩千多年前,古希臘畢達哥拉斯學派的數學家曾經在沙灘上研究數學問題.他們在沙灘上畫點或用小石子表示數,按照點或小石子能排列的形狀對數進行分類.如下圖中實心點的個數5,9,14,20,…為梯形數.根據圖形的構成,記此數列的第2013項為a2013 , 則a2013﹣5=( )
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點(1, )是函數f(x)=
ax(a>0,a≠1)圖象上一點,等比數列{an}的前n項和為c﹣f(n).數列{bn}(bn>0)的首項為2c,前n項和滿足
=
+1(n≥2). (Ⅰ)求數列{an}的通項公式;
(Ⅱ)若數列{ }的前n項和為Tn , 問使Tn>
的最小正整數n是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司計劃種植A,B兩種中藥材,該公司最多能承包50畝的土地,可使用的周轉資金不超過54萬元,假設藥材A售價為0.55萬元/噸,產量為4噸/畝,種植成本1.2萬元/畝;藥材B售價為0.3萬元/噸,產量為6噸/畝,種植成本0.9萬元/畝時公司的總利潤最大,則A,B兩種中藥材的種植面積應各為多少畝,最大利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知向量 ,
,且
.
(1)求角B的大。
(2)若b=2,△ABC的面積為 ,求a+c的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+ax﹣1(e為自然對數的底數). (Ⅰ)當a=1時,求過點(1,f(1))處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com