已知定直線l與平面a成60°角,點(diǎn)P是平面a內(nèi)的一動點(diǎn),且點(diǎn)p到直線l的距離為3,則動點(diǎn)P的軌跡是( )
A.圓B.橢圓的一部分C.拋物線的一部分D.橢圓
D
到直線的距離為的點(diǎn)的軌跡是以直線為旋轉(zhuǎn)軸,以為半徑的無限延伸的圓柱面,此處只不過把這個圓柱面與平面角擺放,用一個水平的平面去切它,不難想象,它應(yīng)該是一個橢圓,所以選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、D分別為橢圓E的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率F、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任一點(diǎn),且的最大值為1 .
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且OAOBO為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請說明理由;
(3)設(shè)直線l與圓相切于A1,且l與橢圓E有且僅有一個公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知直線經(jīng)過橢圓S:的一個焦點(diǎn)和一個頂點(diǎn).
(1)求橢圓S的方程;
(2)如圖,M,N分別是橢圓S的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過P作軸的垂線,垂足為C,連接AC,并延長交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.
①若直線PA平分線段MN,求k的值;
②對任意,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長為.
(1)求過圓心且與直線l垂直的直線m方程;
(2)點(diǎn)P在直線m上,求以A(-1,0),B(1,0)為焦點(diǎn)且過P點(diǎn)的長軸長最小的橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C: 的離心率為,橢圓C上任意一點(diǎn)到橢圓兩焦點(diǎn)的距離之和為6.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A,B兩點(diǎn),點(diǎn)P(0,1),且滿足PA=PB,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上運(yùn)動,則的最大值是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面直角坐標(biāo)系中點(diǎn)F(1,0)和直線,動圓M過點(diǎn)F且與直線相切。
(1)求M的軌跡L的方程;
(2)過點(diǎn)F作斜率為1的直線交曲線L于A、B兩點(diǎn),求|AB|的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知在直角坐標(biāo)平面XOY中,有一個不在Y軸上的動點(diǎn)P(x,y),到定點(diǎn)F(0,)的距離比它到X軸的距離多,記P點(diǎn)的軌跡為曲線C
(I)求曲線C的方程;
(II)已知點(diǎn)M在Y軸上,且過點(diǎn)F的直線與曲線C交于A、B兩點(diǎn),若 為正三角形,求M點(diǎn)的坐標(biāo)與直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A1,A2,B是橢圓=1(a>b>0)的頂點(diǎn)(如圖),直線l與橢圓交于異于頂點(diǎn)的P,Q兩點(diǎn),且l∥A2B,若橢圓的離心率是,且|A2B|=
(1)求此橢圓的方程;
(2)設(shè)直線A1P和直線BQ的傾斜角分別為α,β,試判斷α+β是否為定值?若是,求出此定值;若不是,說明理由。

查看答案和解析>>

同步練習(xí)冊答案