已知平面直角坐標系中點F(1,0)和直線
,動圓M過點F且與直線
相切。
(1)求M的軌跡L的方程;
(2)過點F作斜率為1的直線
交曲線L于A、B兩點,求|AB|的值。
解:(1)設(shè)動圓M的圓心
,則
, 2分
化簡得
4分
(法二)由條件,動圓M的圓心
的軌跡是以F為焦點,直線
為準線的拋物線 2分
為所求 4分
(2)由條件
,代入
得
, 6分
(一)解得
或
10分
11分
|AB|的值為8 12分
(二)設(shè)
,
,則
8分
由拋物線定義,
10分
11分
|AB|的值為8 12分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知點
、
,
是直線
上任意一點,以A、B為焦點的橢圓過點P.記橢圓離心率
關(guān)于
的函數(shù)為
,那么下列結(jié)論正確的是 ( )
A.
與
一一對應 B.函數(shù)
無最小值,有最大值
C.函數(shù)
是增函數(shù) D.函數(shù)
有最小值,無最大值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知定直線l與平面a成60°角,點P是平面a內(nèi)的一動點,且點p到直線l的距離為3,則動點P的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
:
的離心率為
,且過點
.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)垂直于坐標軸的直線
與橢圓
相交于
、
兩點,若以
為直徑的圓
經(jīng)過坐標原點.證明:圓
的半徑為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分) 設(shè)橢圓 C
1:
(
)的一個頂點與拋物線 C
2:
的焦點重合,F(xiàn)
1,F(xiàn)
2 分別是橢圓的左、右焦點,離心率
,過橢圓右焦點 F
2 的直線
與橢圓 C 交于 M,N 兩點.
(I)求橢圓C的方程;
(II)是否存在直線
,使得
,若存在,求出直線
的方程;若不存在,說明理由;
(III)若 AB 是橢圓 C 經(jīng)過原點 O 的弦,MN//AB,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知以原點為中心,F(
,0)為右焦點的橢圓C,過點F垂直于
軸的弦AB長為4.
(1).求橢圓C的標準方程.
(2).設(shè)M、N為橢圓C上的兩動點,且
,點P為橢圓C的右準線與
軸的交點,求
的取值
范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓
的長軸長為
,離
心率
(1)求橢圓C的標準方程;
(2)若過點B(2,0)的直線
(斜率不等于零)與橢圓C交于點E,F(xiàn),且
,
求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的一個焦點為(0,2)則
的值為:( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分)設(shè)過點
的直線
與過點
的直線
相交于點M,
且
與
的斜率
,
的乘積為定值
,求點M的軌跡方程.
查看答案和解析>>