【題目】已知等腰梯形中(如圖1),, , 為線段的中點(diǎn), 為線段上的點(diǎn), ,現(xiàn)將四邊形沿折起(如圖2).
圖1 圖2
⑴求證: 平面;
⑵在圖2中,若,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)連接,由可得,即可證∥且,然后即可證出四邊形為平行四邊形,進(jìn)而可證明平面;(2)作于,連接,在中,可得,在中,可得,結(jié)合,推出,再由,推出平面,即可得到為與平面所成的角,再根據(jù)余弦定理得出,進(jìn)而可求出的值,即直線與平面所成角的正弦值.
試題解析:(1)證明:連接
∵
∴
∴∥,且
又∵∥,且
∴∥,且
∴四邊形為平行四邊形
∴∥
又∵面, 面
∴∥面
(2)作于,連接,在中,易知,而
∴,
在中, ,易知
又∵
∴
在中, , ,
∴
∴
又∵, , 平面, 平面
∴平面
∴為在平面內(nèi)的射影
∴為與平面所成的角
在中,易知
∴
在中,
∴,即與平面的所成的角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,點(diǎn)分別為棱的中點(diǎn), 的重心為,直線垂直于平面.
(1)求證:直線平面;
(2)求二面角的余弦.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求證:平面ABC⊥平面ACD;
(2)若E為AB中點(diǎn),求點(diǎn)A到平面CED的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點(diǎn)
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)圓與點(diǎn)的軌跡交于不同的四個點(diǎn),求四邊形的面積的最大值及相應(yīng)的四個點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市垃圾處理站每月的垃圾處理量最少為400噸,最多為600噸,月處理成本(元)與月垃圾處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸垃圾得到可利用的資源值為100元.
(1)該站每月垃圾處理量為多少噸時,才能使每噸垃圾的平均處理成本最低?
(2)該站每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要市財(cái)政補(bǔ)貼,至少補(bǔ)貼多少元才能使該站不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(I)求棱錐C-ADE的體積;
(II)求證:平面ACE⊥平面CDE;
(III)在線段DE上是否存在一點(diǎn)F,使AF∥平面BCE?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù), 為自然對數(shù)的底數(shù).
(1)若在區(qū)間上的最大值為,求的值;
(2)當(dāng)時,判斷方程是否有實(shí)根?若無實(shí)根請說明理由,若有實(shí)根請給出根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為(, 為常數(shù)).
(1)判斷曲線的形狀;
(2)設(shè)曲線分別與軸, 軸交于點(diǎn), (, 不同于原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;
(3)設(shè)直線: 與曲線交于不同的兩點(diǎn), ,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com