【題目】如圖,在四棱錐中,平面,,,,點(diǎn)Q在棱AB上.
(1)證明:平面.
(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)線面垂直只需證明PD和平面內(nèi)兩條相交直線垂直即可,易得,另外中已知三邊長(zhǎng)通過(guò)勾股定理易得,所以平面。(2)點(diǎn)B到平面PDQ的距離通過(guò)求得三棱錐的體積和面積即可,而,帶入數(shù)據(jù)求解即可。
(1)證明:在中,,,所以.
所以是直角三角形,且,即.
因?yàn)?/span>平面PAD,平面PAD,所以.
因?yàn)?/span>,所以平面ABCD.
(2)解:設(shè).
因?yàn)?/span>.,所以的面積為.
因?yàn)?/span>平面ABCD,所以三棱錐的體積為,解得.
因?yàn)?/span>,所以,所以的面積為.
則三棱錐的體積為.
在中,,,,
則.
設(shè)點(diǎn)B到平面PDQ的距離為h,則,解得,
即點(diǎn)B到平面PDQ的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知是遞增數(shù)列,其前項(xiàng)和為,,且,.
(Ⅰ)求數(shù)列的通項(xiàng);
(Ⅱ)是否存在使得成立?若存在,寫(xiě)出一組符合條件的的值;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)設(shè),若對(duì)于任意的,不等式
恒成立,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣4:極坐標(biāo)與參數(shù)方程
極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長(zhǎng)度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為 ,曲線C2的極坐標(biāo)方程為ρsinθ=a(a>0),射線 , 與曲線C1分別交異于極點(diǎn)O的四點(diǎn)A,B,C,D.
(Ⅰ)若曲線C1關(guān)于曲線C2對(duì)稱(chēng),求a的值,并把曲線C1和C2化成直角坐標(biāo)方程;
(Ⅱ)求|OA||OC|+|OB||OD|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,是橢圓上一點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于兩點(diǎn),是直線上任意一點(diǎn).證明:直線的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義域上的單調(diào)遞增函數(shù)
(1)求證:命題“設(shè),若,則”是真命題
(2)解關(guān)于的不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過(guò)樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1﹣ax(a>1)在[0,a]上的最小值為f(x0),且x0<2,則實(shí)數(shù)a的取值范圍是( )
A.(1,2)
B.(1,e)
C.(2,e)
D.( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,C為圓周上一點(diǎn),過(guò)C作圓O的切線l,過(guò)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E.
(1)求證:ABDE=BCCE;
(2)若AB=8,BC=4,求線段AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com