若雙曲線的離心率是2,則實(shí)數(shù)k的值是     

試題分析:先根據(jù)雙曲線方程可知a和b,進(jìn)而求得c的表達(dá)式,利用離心率為2求得k的值.根據(jù)題意,由于雙曲線的離心率是,則可知 ,故答案為
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了學(xué)生的基礎(chǔ)知識(shí)的積累.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別是,Q是橢圓外的動(dòng)點(diǎn),滿足.點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)T是的中點(diǎn).

(Ⅰ)設(shè)為點(diǎn)的橫坐標(biāo),證明
(Ⅱ)求點(diǎn)T的軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的離心率為,是其左右頂點(diǎn),是橢圓上位于軸兩側(cè)的點(diǎn)(點(diǎn)軸上方),且四邊形面積的最大值為4.

(1)求橢圓方程;
(2)設(shè)直線的斜率分別為,若,設(shè)△與△的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的頂點(diǎn)到漸進(jìn)線的距離等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)連接雙曲線的四個(gè)頂點(diǎn)組成的四邊形的面積為,連接其四個(gè)焦點(diǎn)組成的四邊形的面積為,則 的最大值是
A.B.C. 1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn) 為、且過(guò)點(diǎn)橢圓;
(2)與雙曲線有相同的漸近線,且過(guò)點(diǎn)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是橢圓的左、右焦點(diǎn),是橢圓上位于第一象限內(nèi)的一點(diǎn),點(diǎn)也在橢圓上,且滿足是坐標(biāo)原點(diǎn)),,若橢圓的離心率為.
(1)若的面積等于,求橢圓的方程;
(2)設(shè)直線與(1)中的橢圓相交于不同的兩點(diǎn),已知點(diǎn)的坐標(biāo)為(),點(diǎn)在線段的垂直平分線上,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)中心在原點(diǎn)的雙曲線與橢圓+y2=1有公共的焦點(diǎn),且它們的離心率互為倒數(shù),則該雙曲線的方程是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心及的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表:










(Ⅰ)求曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線過(guò)拋物線的焦點(diǎn),與橢圓交于不同的兩點(diǎn)、,當(dāng)時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案