【題目】已知曲線C的極坐標方程是ρ=2sinθ,直線l的參數(shù)方程是 (t為參數(shù)).設直線l與x軸的交點是M,N是曲線C上一動點,求MN的最大值.

【答案】解:曲線C的極坐標方程可化為ρ2=2ρsinθ.又x2+y22 , x=ρcosθ,y=ρsinθ,
∴曲線C的直角坐標方程為x2+y2﹣2y=0.
將直線l的參數(shù)方程消去t化為直角坐標方程: ,
令y=0,得x=2,即M點的坐標為(2,0).又曲線C的圓心坐標為(0,1),
半徑r=1,則 ,

【解析】利用x2+y22 , x=ρcosθ,y=ρsinθ,可把曲線C的極坐標方程化為直角坐標方程.將直線l的參數(shù)方程消去t化為直角坐標方程:
令y=0,可得M點的坐標為(2,0).利用|MN|≤|MC|+r即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩廠的產品質量,分別從兩廠生產的產品中各隨機抽取10件,測量產品中某種元素的含量(單位:毫克),其測量數(shù)據(jù)的莖葉圖如圖所示.

規(guī)定:當產品中此種元素的含量大于18毫克時,認定該產品為優(yōu)等品.

(1)試比較甲、乙兩廠生產的產品中該種元素含量的平均值的大小;

(2)從乙廠抽出的上述10件產品中隨機抽取3件,求抽到的3件產品中優(yōu)等品數(shù)X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)若,求經過點且與曲線只有一個公共點的直線方程:

(2)若,請在直角坐標平面內找出縱坐標不同的兩個點,此兩點滿足條件:無論如何變化,這兩個點都不在曲線上;

(3)若曲線與線段有公共點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)當時,求曲線在點處的切線方程;

(2)設,若不等式對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C 與y 軸交于A,B 兩點,且|AB|=2.
(Ⅰ)求橢圓C 的方程;
(Ⅱ)設點P是橢圓C上的一個動點,且點P在y軸的右側.直線PA,PB與直線x=4分別交于M,N兩點.若以MN為直徑的圓與x 軸交于兩點E,F(xiàn),求點P橫坐標的取值范圍及|EF|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:x∈[-1,2],函數(shù)f(x)=x2-x的值大于0,若p∨q是真命題,則命題q可以是(  )

A. x0∈(-1,1),cos x0

B. “-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間上有零點”的必要不充分條件

C. x=是曲線f(x)=sin 2x+cos 2x的一條對稱軸

D. 若x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點處的切線的斜率不小于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0)的最小正周期為π,則該函數(shù)的圖象(
A.關于直線x= 對稱
B.關于點( ,0)對稱
C.關于直線x=﹣ 對稱
D.關于點( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網上購物系統(tǒng)是一種具有交互功能的商業(yè)信息系統(tǒng),它在網絡上建立一個虛擬的購物商場,使購物過程變得輕松、快捷、方便.網上購物系統(tǒng)分為前臺管理和后臺管理,前臺管理包括瀏覽商品、查詢商品、訂購商品、用戶注冊等功能;后臺管理包括公告管理、商品管理、訂單管理、投訴管理和用戶管理等模塊.根據(jù)這些要求畫出該系統(tǒng)的結構圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,D是直角△ABC斜邊BC上一點,AC= DC.
(I)若∠DAC=30°,求角B的大。
(Ⅱ)若BD=2DC,且AD=2 ,求DC的長.

查看答案和解析>>

同步練習冊答案