【題目】定義在R上函數(shù)f(x),且f(x)+f(﹣x)=0,當(dāng)x<0時(shí),f(x)=( )x﹣8×( )x﹣1
(1)求f(x)的解析式;
(2)當(dāng)x∈[1,3]時(shí),求f(x)的最大值和最小值.
【答案】
(1)解:f(x)+f(﹣x)=0,則函數(shù)f(x)是奇函數(shù),則f(0)=0,(2分)
當(dāng)x>0時(shí),﹣x<0,則 ,
所以 ,
所以
(2)解:令t=2x,則t∈[2,8],y=﹣t2+8t+1t∈[2,8],
對稱軸為t=4∈[2,8],
當(dāng)t=4,即x=2,f(x)max=﹣16+32+1=17;
當(dāng)t=8,即x=3,f(x)min=﹣64+64+1=1.
【解析】(1)確定f(0)=0,當(dāng)x>0時(shí),﹣x<0,利用當(dāng)x<0時(shí),f(x)=( )x﹣8×( )x﹣1,求出函數(shù)的解析式,即可求f(x)的解析式;(2)當(dāng)x∈[1,3]時(shí),換元,利用配方法求f(x)的最大值和最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣1,1),B(7,﹣1),C(﹣2,5),AB邊上的中線所在直線為l.
(1)求直線l的方程;
(2)若點(diǎn)A關(guān)于直線l的對稱點(diǎn)為D,求△BCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鋼管生產(chǎn)車間生產(chǎn)一批鋼管,質(zhì)檢員從中抽出若干根對其直徑(單位:)進(jìn)行測量,得出這批鋼管的直徑服從正態(tài)分布.
(Ⅰ)如果鋼管的直徑滿足為合格品,求該批鋼管為合格品的概率(精確到0.01);
(Ⅱ)根據(jù)(Ⅰ)的結(jié)論,現(xiàn)要從40根該種鋼管中任意挑選3根,求次品數(shù)的分布列和數(shù)學(xué)期望.
(參考數(shù)據(jù):若,則;;)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P,Q分別是BC和CD的中點(diǎn).
(1)若AB=2,AD=1,∠BAD=60°,求 及cos∠BAC的余弦值;
(2)若 =λ + ,求λ+μ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為 ,左焦點(diǎn)到左頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)M(1,1)的直線與橢圓C相交于A,B兩點(diǎn),且點(diǎn)M為弦AB中點(diǎn),求直線AB的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com