【題目】在平面直角坐標系中,點,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)求曲線的直角坐標方程;

(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.

【答案】(1);(2).

【解析】

(1)在已知極坐標方程兩邊同時乘以ρ后,利用ρcosθxρsinθyρ2x2+y2可得曲線C的直角坐標方程;

(2)聯(lián)立直線l的參數(shù)方程與x24y由韋達定理以及參數(shù)的幾何意義和弦長公式可得弦長與已知弦長相等可解得.

解:(1)ρ+ρcos2θ8sinθ中兩邊同時乘以ρρ2+ρ2cos2θsin2θ)=8ρsinθ

x2+y2+x2y28y,即x24y,

所以曲線C的直角坐標方程為:x24y

(2)聯(lián)立直線l的參數(shù)方程與x24y得:(cosα2t24sinαt+40,

AB兩點對應的參數(shù)分別為t1,t2,

由△=16sin2α16cos2α0,得sinα,

t1+t2,由|PM|,

所以20sin2α+9sinα200,解得sinαsinα=﹣(舍去),

所以sinα

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求曲線處的切線方程;

2)若不等式對任意恒成立,求正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與橢圓有一個相同的焦點,過點且與軸不垂直的直線與拋物線交于,兩點,關于軸的對稱點為.

(1)求拋物線的方程;

(2)試問直線是否過定點?若是,求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線,(為參數(shù)),將曲線上的所有點的橫坐標縮短為原來的,縱坐標縮短為原來的后得到曲線,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為

1)求曲線的極坐標方程和直線l的直角坐標方程;

2)設直線l與曲線交于不同的兩點A,B,點M為拋物線的焦點,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正三角形所在平面與梯形所在平面垂直, , 為棱的中點.

(1)求證: 平面;

(2)若直線與平面所成的角為30°,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統(tǒng)計數(shù)據如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根據上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;

2)現(xiàn)從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數(shù)為,寫出的分布列,并求

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論函數(shù)的單調性;

(2)當證明不等式恒成立(其中,).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),有以下三個結論:

①函數(shù)恒有兩個零點,且兩個零點之積為;

②函數(shù)的極值點不可能是;

③函數(shù)必有最小值.

其中正確結論的個數(shù)有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長、短軸四個端點為頂點為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點分別為、,當動點在定直線上運動時,直線分別交橢圓于兩點、,求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案