【題目】已知拋物線與橢圓有一個(gè)相同的焦點(diǎn),過點(diǎn)且與軸不垂直的直線與拋物線交于,兩點(diǎn),關(guān)于軸的對稱點(diǎn)為.

(1)求拋物線的方程;

(2)試問直線是否過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請說明理由.

【答案】(1);(2)

【解析】

1)求出橢圓的焦點(diǎn),容易求得拋物線的方程.

2)解法一:設(shè)直線的方程為與拋物線聯(lián)立,得到橫坐標(biāo)關(guān)系,設(shè)直線的方程為與拋物線聯(lián)立,得到橫坐標(biāo)關(guān)系,從而得到的關(guān)系,找出定點(diǎn).

解法二:直線的方程為,與拋物線聯(lián)立,得到縱坐標(biāo)關(guān)系,設(shè)直線的方程為,與拋物線聯(lián)立,得到縱坐標(biāo)關(guān)系,從而可以解出,得到定點(diǎn).

(1)由題意可知拋物線的焦點(diǎn)為橢圓的右焦點(diǎn),坐標(biāo)為

所以,所以拋物線的方程為

(2)【解法一】因?yàn)辄c(diǎn)與點(diǎn)關(guān)于軸對稱

所以設(shè),

設(shè)直線的方程為,

代入得:,所以,

設(shè)直線的方程為,

代入得:,所以

因?yàn)?/span>,,所以,即

所以直線的方程為,必過定點(diǎn).

【解法二】

設(shè),,,

因?yàn)辄c(diǎn)與點(diǎn)關(guān)于軸對稱,所以,

設(shè)直線的方程為,

代入得:,所以,

設(shè)直線的方程為,

代入得:,所以,

因?yàn)?/span>,所以,即,

所以直線的方程為,必過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)給出兩個(gè)條件:①,②,從中選出一個(gè)條件補(bǔ)充在下面的問題中,并以此為依據(jù)求解問題:(選出一種可行的條件解答,若兩個(gè)都選,則按第一個(gè)解答計(jì)分)在中,分別為內(nèi)角所對的邊( ).

1)求;

2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x|xa|,aR.

1)當(dāng)f2+f(﹣2)>4時(shí),求a的取值范圍;

2)若a0x,y∈(﹣a],不等式fx≤|y+3|+|ya|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖像上存在兩個(gè)不同的點(diǎn)關(guān)于軸對稱,則稱函數(shù)圖像上存在一對偶點(diǎn)

1)寫出函數(shù)圖像上一對偶點(diǎn)的坐標(biāo);(不需寫出過程)

2)證明:函數(shù)圖像上有且只有一對偶點(diǎn);

3)若函數(shù)圖像上有且只有一對偶點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年1月1日,濟(jì)南軌道交通號線試運(yùn)行,濟(jì)南軌道交通集團(tuán)面向廣大市民開展“參觀體驗(yàn),征求意見”活動,市民可以通過濟(jì)南地鐵APP搶票,小陳搶到了三張?bào)w驗(yàn)票,準(zhǔn)備從四位朋友小王,小張,小劉,小李中隨機(jī)選擇兩位與自己一起去參加體驗(yàn)活動,則小王被選中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201912月以來,湖北武漢市發(fā)現(xiàn)多起病毒性肺炎病例,并迅速在全國范圍內(nèi)開始傳播,專家組認(rèn)為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過與患者的密切接觸進(jìn)行傳染.我們把與患者有過密切接觸的人群稱為密切接觸者,每位密切接觸者被感染后即被稱為患者.已知每位密切接觸者在接觸一個(gè)患者后被感染的概率為,某位患者在隔離之前,每天有位密切接觸者,其中被感染的人數(shù)為,假設(shè)每位密切接觸者不再接觸其他患者.

1)求一天內(nèi)被感染人數(shù)為的概率的關(guān)系式和的數(shù)學(xué)期望;

2)該病毒在進(jìn)入人體后有14天的潛伏期,在這14天的潛伏期內(nèi)患者無任何癥狀,為病毒傳播的最佳時(shí)間,設(shè)每位患者在被感染后的第二天又有位密切接觸者,從某一名患者被感染,按第1天算起,第天新增患者的數(shù)學(xué)期望記為.

i)求數(shù)列的通項(xiàng)公式,并證明數(shù)列為等比數(shù)列;

ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率,當(dāng)取最大值時(shí),計(jì)算此時(shí)所對應(yīng)的值和此時(shí)對應(yīng)的值,根據(jù)計(jì)算結(jié)果說明戴口罩的必要性.(取

(結(jié)果保留整數(shù),參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的最大值是0,

1)求的值;

2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于不同的兩點(diǎn)是線段的中點(diǎn),當(dāng)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

2是函數(shù)的極值點(diǎn),求函數(shù)的單調(diào)區(qū)間;

3)在(2)的條件下,,若,使不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案