函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)將的圖像向左平移個單位,再將得到的圖像橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變)后得到的圖像,若的圖像與直線交點的橫坐標(biāo)由小到大依次是求數(shù)列的前2n項的和。
(Ⅰ)的單調(diào)遞減區(qū)間為;(Ⅱ).
解析試題分析:(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間,首先對進(jìn)行恒等變化,將它變?yōu)橐粋角的一個三角函數(shù),然后利用三角函數(shù)的單調(diào)性,來求函數(shù)的單調(diào)遞減區(qū)間,本題首先通過降冪公式降冪,及倍角公式,得到與的關(guān)系式,再利用兩角和的三角函數(shù)公式,得到,從而得到單調(diào)遞減區(qū)間;(Ⅱ)本題由的圖像,根據(jù)圖象的變化規(guī)律得到函數(shù)的圖象;從而求出的解析式,再結(jié)合正弦曲線的對稱性,周期性求出相鄰兩項的和及其規(guī)律,最后結(jié)合等差數(shù)列的求和公式即可得到結(jié)論.
試題解析:(Ⅰ)
. 4分
令,所以
所以的單調(diào)遞減區(qū)間為. 6分
(Ⅱ)將的圖象向左平移個單位后,
得到. 7分
再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變)后得到, 8分解法一:若函數(shù)的圖象與直線交點的橫坐標(biāo)由小到大依次是
、、、、,則由余弦曲線的對稱性,周期性可知,
9分
所以
. 12分
解法二:若函數(shù)的圖象與直線交點的橫坐標(biāo)由小到大依次是、、、、,則. 9分
由余弦曲線的周期性可知,
;
所以
. 12分
考點:二倍角的余弦;兩角和與差的正弦函數(shù);二倍角的正弦;函數(shù)的圖象變換.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時,求值;
(Ⅱ)若存在區(qū)間(且),使得在上至少含有6個零
點,在滿足上述條件的中,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C所對的邊分別為,已知函數(shù) R).
(Ⅰ)求函數(shù)的最小正周期和最大值;
(Ⅱ)若函數(shù)在處取得最大值,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知角的頂點在原點,始邊與x軸正半軸重合,終邊為射線4x+3y=0(x≥0),求5sin-3 tan+2cos的值.
(2)化簡:.其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,,三點.
(1)求向量和向量的坐標(biāo);
(2)設(shè),求的最小正周期;
(3)求的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com