已知函數(shù)f(x)=
1+lnx
x

(1)若函數(shù)f(x)在區(qū)間(
a
2
,a+
1
2
)
上存在極值,其中a>0,求實數(shù)a的取值范圍.
(2)設(shè)g(x)=xf(x)+bx-1+ln(2-x
)
 
 
(b>0)
,若g(x)在(0,1]上的最大值為
1
2
,求實數(shù)b的值.
分析:(1)利用導(dǎo)數(shù)求出函數(shù)f(x)的極值點,設(shè)為x0,則x0∈(
a
2
,a+
1
2
)
,由此可得a的范圍;
(2)寫出g(x)的表達式,利用導(dǎo)數(shù)求出g(x)在(0,1]上的最大值,使其等于
1
2
,即可求得b值;
解答:解:(1)∵函數(shù)f(x)的定義域為{x|x>0},f′(x)=-
lnx
x2
,
f′(x)=-
lnx
x2
=0
,解得x=1,
當(dāng)0<x<1時,f'(x)>0,f(x)單調(diào)遞增;當(dāng)x>1時,f'(x)<0,f(x)單調(diào)遞減,
∴f(x)在x=1處取極大值,
因為f(x)在區(qū)間(
a
2
,a+
1
2
)
上存在極值,所以
a
2
<1<a+
1
2
,解得
1
2
<a<2

所以實數(shù)a的取值范圍是(
1
2
,2).
(2)g(x)=xf(x)+bx-1-ln(2-x)=bx+lnx-ln(2-x),
∵b>0,當(dāng)x∈(0,1]時,g′(x)=b+
2
x(2-x)
>0,
所以g(x)在(0,1]上單調(diào)遞增,
故g(x)在(0,1]上的最大值為g(1)=b,
因此b=
1
2
點評:本題考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的極值及求函數(shù)在閉區(qū)間上的最值問題,準(zhǔn)確求導(dǎo),熟知導(dǎo)數(shù)與函數(shù)極值、最值的關(guān)系是解決問題的基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點;
②?x∈(8,+∞),f(x)>0.
則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實數(shù)a的取值范圍;
(2)當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案