【題目】數(shù)列的前項(xiàng)和為,若存在正整數(shù),且,使得,同時成立,則稱數(shù)列為“數(shù)列”.
(1)若首項(xiàng)為,公差為的等差數(shù)列是“數(shù)列”,求的值;
(2)已知數(shù)列為等比數(shù)列,公比為.
①若數(shù)列為“數(shù)列”,,求的值;
②若數(shù)列為“數(shù)列”,,求證:為奇數(shù),為偶數(shù).
【答案】(1);(2)①;②證明見解析
【解析】
(1)根據(jù)題意,以及“數(shù)列”的概念,得到,求解,即可得出結(jié)果;
(2)①根據(jù)數(shù)列為“數(shù)列”,得到,再由,即可得出結(jié)果;
②根據(jù)數(shù)列為“數(shù)列”,得到,令,分別討論:為偶數(shù);為偶數(shù),為奇數(shù);為奇數(shù)三種情況,結(jié)合導(dǎo)數(shù)的方法進(jìn)行處理,即可得出結(jié)果.
解:(1)若首項(xiàng)為,公差為的等差數(shù)列是“數(shù)列”,
由題意可得,,解得:;
(2)①若數(shù)列為“數(shù)列”,則,
又,
所以或;
②若數(shù)列為“數(shù)列”,則,
令,
若為偶數(shù),則,不符合題意;
若為偶數(shù),為奇數(shù),不符題意;
若為奇數(shù),,
則,
令,,則,
所以在上單調(diào)遞減,在上單調(diào)遞增;
∴
即單調(diào)增,與題意不符;
綜上為奇數(shù),為偶數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:,:,圓:.
(1)當(dāng)為何值時,直線與平行;
(2)當(dāng)直線與圓相交于,兩點(diǎn),且時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率是,且經(jīng)過點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)F的直線l與橢圓C相交于A,B兩點(diǎn),點(diǎn)B關(guān)于x軸的對稱點(diǎn)為H,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)滿足:對任何,都有,且當(dāng)時,.在下列結(jié)論:
(1)對任何,都有;(2)任意,都有;
(3)函數(shù)的值域是;
(4)“函數(shù)在區(qū)間上單調(diào)遞減”的充要條件是“存在,使得”.
其中正確命題是( )
A.(1)(2)B.(1)(2)(3)C.(1)(3)(4)D.(2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)歷年大學(xué)生就業(yè)統(tǒng)計(jì)資料顯示:某大學(xué)理工學(xué)院學(xué)生的就業(yè)去向涉及公務(wù)員、教師、金融、商貿(mào)、公司和自主創(chuàng)業(yè)等六大行業(yè).2020屆該學(xué)院有數(shù)學(xué)與應(yīng)用數(shù)學(xué)、計(jì)算機(jī)科學(xué)與技術(shù)和金融工程等三個本科專業(yè),畢業(yè)生人數(shù)分別是70人,140人和210人.現(xiàn)采用分層抽樣的方法,從該學(xué)院畢業(yè)生中抽取18人調(diào)查學(xué)生的就業(yè)意向.
(1)應(yīng)從該學(xué)院三個專業(yè)的畢業(yè)生中分別抽取多少人?
(2)國家鼓勵大學(xué)生自主創(chuàng)業(yè),在抽取的18人中,含有“自主創(chuàng)業(yè)”就業(yè)意向的有6人,且就業(yè)意向至少有三個行業(yè)的學(xué)生有7人.為方便統(tǒng)計(jì),將至少有三個行業(yè)就業(yè)意向的這7名學(xué)生分別記為,,,,,,,統(tǒng)計(jì)如下表:
學(xué)生 就業(yè)意向 | |||||||
公務(wù)員 | × | 〇 | × | 〇 | 〇 | × | × |
教師 | × | 〇 | × | 〇 | 〇 | 〇 | 〇 |
金融 | × | × | 〇 | 〇 | 〇 | × | × |
商貿(mào) | 〇 | 〇 | 〇 | × | 〇 | 〇 | 〇 |
公司 | 〇 | 〇 | × | 〇 | 〇 | × | 〇 |
自主創(chuàng)業(yè) | 〇 | × | 〇 | × | × | 〇 | 〇 |
其中“〇”表示有該行業(yè)就業(yè)意向,“×”表示無該行業(yè)就業(yè)意向.
①試估計(jì)該學(xué)院2020屆畢業(yè)生中有自主創(chuàng)業(yè)意向的學(xué)生人數(shù);
②現(xiàn)從,,,,,,這7人中隨機(jī)抽取2人接受采訪,設(shè)為事件“抽取的2人中至少有一人有自主創(chuàng)業(yè)意向”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間及極值;
(2)設(shè)時,存在,使方程成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,均值與方差都不變;②將某校參加摸底測試的1200名學(xué)生編號為1,2,3,…,1200,從中抽取一個容量為50的樣本進(jìn)行學(xué)習(xí)情況調(diào)查,按系統(tǒng)抽樣的方法分為50組,如果第一組中抽出的學(xué)生編號為20,則第四組中抽取的學(xué)生編號為92;③線性回歸方程必經(jīng)過點(diǎn);④在吸煙與患肺病這兩個分類變量的計(jì)算中,從獨(dú)立性檢驗(yàn)知,有的把握認(rèn)為吸煙與患肺病有關(guān)系時,我們說現(xiàn)有100人吸煙,那么其中有99人患肺病.其中錯誤的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:①在回歸模型中,預(yù)報(bào)變量y的值不能由解釋變量x唯一確定;②若變量x,y滿足關(guān)系,且變量y與z正相關(guān),則x與z也正相關(guān);③在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;④以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則,.
其中真命題的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com