【題目】如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交BC于點E,AB=2AC,
(1)求證:BE=2AD;
(2)求函數AC=1,BC=2時,求AD的長.
【答案】
(1)證明:連接DE,
∵ACED是圓的內接四邊形,
∴∠BDE=∠BCA,
∵∠DBE=∠CBA,
∴△BDE∽△BCA,
∴ ,
∵AB=2AC,
∴BE=2DE.
∵CD是∠ACB的平分線,
∴AD=DE,
從而BE=2AD
(2)解:由條件得AB=2AC=2,
設AD=t,根據割線定理得
BDBA=BEBC,
∴(AB﹣AD)BA=2ADBC,
∴(2﹣t)×2=2t2,
解得t= ,即AD=
【解析】(1)連接DE,因為ACED是圓的內接四邊形,所以△BDE∽△BCA,由此能夠證明BE=2AD.(2)由條件得AB=2AC=2,根據割線定理得BDBA=BEBC,即(AB﹣AD)BA=2AD(2AD+CE),由此能求出AD.
科目:高中數學 來源: 題型:
【題目】關于函數f(x)=sin(x﹣)sin(x+),有下列命題:
①此函數可以化為f(x)=﹣sin(2x+);
②函數f(x)的最小正周期是π,其圖象的一個對稱中心是( , 0);
③函數f(x)的最小值為﹣ , 其圖象的一條對稱軸是x=;
④函數f(x)的圖象向右平移個單位后得到的函數是偶函數;
⑤函數f(x)在區(qū)間(﹣ , 0)上是減函數.
其中所有正確的命題的序號個數是( 。
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=1nx.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求證:當x>0時, ;
(Ⅲ)若x﹣1>a1nx對任意x>1恒成立,求實數a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·新課標I卷)選修4-5:不等式選講
已知函數f(x)=|x+1|-2|x-a|, a>0.
(1)當a=1時求不等式f(x)>1的解集;
(2)若f(x)圖像與x軸圍成的三角形面積大于6,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標系方程;
(2)設直線l與曲線C相交于A,B兩點,求∠AOB的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | 合 計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
合 計 | 60 | 50 | 110 |
根據上述數據能得出的結論是( )
(參考公式與數據:X2= .當X2>3.841時,有95%的把握說事件A與B有關;當X2>6.635時,有99%的把握說事件A與B有關; 當X2<3.841時認為事件A與B無關.)
A.有99%的把握認為“愛好該項運動與性別有關”
B.有99%的把握認為“愛好該項運動與性別無關”
C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
D.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·北京)某校老年、中年和青年教師的人數見下表,采用分層抽樣的方法調查教師的身體狀況,在抽取的樣本
中,青年教師有320人,則該樣本的老年教師人數為( )
A.90
B.100
C.180
D.300
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,拋物線C1:x2=4y,C2:x2=﹣2py(p>0),點M(x0 , y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O),當x0=1﹣ 時,切線MA的斜率為﹣ .
(1)求P的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com