【題目】已知F1、F2分別為橢圓C: + =1(a>b>0)的左、右焦點(diǎn),且離心率為 ,點(diǎn)A(﹣ , )在橢圓C上.
(1)求橢圓C的方程;
(2)是否存在斜率為k的直線l與橢圓C交于不同的兩點(diǎn)M、N,使直線F2M與F2N的傾斜角互補(bǔ),且直線l是否恒過(guò)定點(diǎn),若存在,求出該定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
【答案】
(1)解:∵F1、F2分別為橢圓C: + =1(a>b>0)的左、右焦點(diǎn),
且離心率為 ,點(diǎn)A(﹣ , )在橢圓C上.
∴ ,解得a2=2,b2=1.
∴橢圓C的方程為
(2)解:由題意知直線MN存在斜率,其方程為y=kx+m,
由 ,
消去y,得(2k2+1)x2+4kmx+2m2﹣2=0,
△=(4km)2﹣4(2k2+1)(2m2﹣2)>0,
設(shè)M( , ,
又kF2M= , ,
由已知直線F2M與F2N的傾斜角互補(bǔ),
得 .
化簡(jiǎn),得2kx1x2+(m﹣k)(x1+x2)﹣2m=0,
∴
整理得m=﹣2k.
直線MN的方程為y=k(x﹣2),
因此直線MN過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0).
【解析】(1)由已知得 ,由此能求出橢圓C的方程.(2)由題意知直線MN存在斜率,其方程為y=kx+m,由 ,得(2k2+1)x2+4kmx+2m2﹣2=0,由此利用根的判別式和韋達(dá)定理結(jié)合已知條件推導(dǎo)出直線MN過(guò)定點(diǎn)(2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)是否存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有 <0?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)面A1ADD1⊥底面ABCD,D1A=D1D= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(1)求證:A1O∥平面AB1C;
(2)求銳二面角A﹣C1D1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn)、G分別為EB和AB的中點(diǎn).
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為 的直線l與曲線C: ,(α為參數(shù))交于A,B兩點(diǎn),且|AB|=2,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則直線l的極坐標(biāo)方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M時(shí),求 +1的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}中.已知a1=b1=1.a(chǎn)2=b2 . a6=b3
(1)求等差數(shù)列{an}的通項(xiàng)公式an和等比數(shù)列{bn}的通項(xiàng)公式bn;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別為CD、DD1的中點(diǎn),則異面直線EF與A1C1所成角的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間四個(gè)點(diǎn)A(1,1,1),B(﹣4,0,2),C(﹣3,﹣1,0),D(﹣1,0,4),則直線AD與平面ABC所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com