【題目】已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)是否存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有 <0?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)解:設(shè)P(x,y)是曲線C上任意一點(diǎn),那么點(diǎn)P(x,y)滿足:
化簡(jiǎn)得y2=4x(x>0).
(2)解:設(shè)過(guò)點(diǎn)M(m,0)(m>0)的直線l與曲線C的交點(diǎn)為A(x1,y1),B(x2,y2).
設(shè)l的方程為x=ty+m,由 得y2﹣4ty﹣4m=0,△=16(t2+m)>0,
于是 ①
又 . (x1﹣1)(x2﹣1)+y1y2=x1x2﹣(x1+x2)+1+y1y2<0②
又 ,于是不等式②等價(jià)于 ③由①式,不等式③等價(jià)于m2﹣6m+1<4t2④
對(duì)任意實(shí)數(shù)t,4t2的最小值為0,所以不等式④對(duì)于一切t成立等價(jià)于m2﹣6m+1<0,解得 .
由此可知,存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有 ,且m的取值范圍 .
【解析】(1)設(shè)P(x,y)是曲線C上任意一點(diǎn),然后根據(jù)等量關(guān)系列方程整理即可.(2)首先由于過(guò)點(diǎn)M(m,0)的直線與開(kāi)口向右的拋物線有兩個(gè)交點(diǎn)A、B,則設(shè)該直線的方程為x=ty+m(包括無(wú)斜率的直線);然后與拋物線方程聯(lián)立方程組,進(jìn)而通過(guò)消元轉(zhuǎn)化為一元二次方程;再根據(jù)韋達(dá)定理及向量的數(shù)量積公式,實(shí)現(xiàn) <0的等價(jià)轉(zhuǎn)化;最后通過(guò)m、t的不等式求出m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)M(1, ),N(﹣4,﹣ ),給出下列曲線方程:
①4x+2y﹣1=0;
②x2+y2=3;
③ +y2=1;
④ ﹣y2=1.
在曲線上存在點(diǎn)P滿足|MP|=|NP|的所有曲線方程是( )
A.①③
B.②④
C.①②③
D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=n2﹣4n,數(shù)列{bn}中,b1= 對(duì)任意正整數(shù) .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)μ,使得數(shù)列{3nbn+μ}是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)μ及公比q的值,若不存在,請(qǐng)說(shuō)明理由;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論正確的是( )
A.各個(gè)面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個(gè)棱錐和一個(gè)棱臺(tái)
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成等差數(shù)列,有下列四個(gè)結(jié)論:①b2≥ac;② ;③ ;④ .其中正確的結(jié)論序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了了解毛衣的月銷售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4個(gè)月的月銷售量與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:
月平均氣溫x(℃) | 17 | 13 | 8 | 2 |
月銷售量y(件) | 24 | 33 | 40 | 55 |
由表中數(shù)據(jù)算出線性回歸方程 =bx+a中的b=﹣2,氣象部門預(yù)測(cè)下個(gè)月的平均氣溫約為6℃,據(jù)此估計(jì)該商場(chǎng)下個(gè)月毛衣銷售量約為( )件.
A.46
B.40
C.38
D.58
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1、F2分別為橢圓C: + =1(a>b>0)的左、右焦點(diǎn),且離心率為 ,點(diǎn)A(﹣ , )在橢圓C上.
(1)求橢圓C的方程;
(2)是否存在斜率為k的直線l與橢圓C交于不同的兩點(diǎn)M、N,使直線F2M與F2N的傾斜角互補(bǔ),且直線l是否恒過(guò)定點(diǎn),若存在,求出該定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com