已知函數(shù).
(1)求的解集;
(2)設(shè)函數(shù),若對任意的都成立,求的取值范圍.
(1)或;(2).
解析試題分析:本題主要考查絕對值不等式的解法、分段函數(shù)圖象、直線圖象等基礎(chǔ)知識,考查學(xué)生的轉(zhuǎn)化能力、計(jì)算能力和數(shù)形結(jié)合思想.第一問,先將被開方數(shù)寫成完全平方式,開方需要加絕對值,解絕對值不等式,利用零點(diǎn)分段法去掉絕對值符號,解不等式組;第二問,“對任意的都成立”轉(zhuǎn)化為“的圖象恒在圖象的上方”利用零點(diǎn)分段法將絕對值去掉,轉(zhuǎn)化成分段函數(shù),畫出分段函數(shù)圖象,而恒過(3,0)點(diǎn),將的直線繞(3,0)點(diǎn)旋轉(zhuǎn),找出符合題意的位置,得到k的取值范圍.
試題解析:(1)
∴即
∴①或②或③
解得不等式①:;②:無解③:
所以的解集為或. 5分
(2)即的圖象恒在圖象的上方
圖象為恒過定點(diǎn),且斜率變化的一條直線作函數(shù)圖象如圖,其中,,∴
由圖可知,要使得的圖象恒在圖象的上方
∴實(shí)數(shù)的取值范圍為. 10分
考點(diǎn):絕對值不等式的解法、分段函數(shù)圖象、直線圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
關(guān)于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(a是常數(shù),a∈R)
(1)當(dāng)a=1時求不等式的解集.
(2)如果函數(shù)恰有兩個不同的零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中為常數(shù),.
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)是否存在實(shí)數(shù),使的極大值為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若,求函數(shù)的零點(diǎn);
(2)若函數(shù)在區(qū)間上恰有一個零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),用表示當(dāng)時的函數(shù)值中整數(shù)值的個數(shù).
(1)求的表達(dá)式.
(2)設(shè),求.
(3)設(shè),若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時,函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個不相同的實(shí)數(shù)根,求a取值的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com