(本題滿分9分)已知頂點在原點,焦點在軸上的拋物線過點
(1)求拋物線的標準方程;
(2)過點作直線交拋物線于兩點,使得恰好平分線段,求直線的方程
(1);(2)。

試題分析:(1)設拋物線方程為x2=2py(p>0),由已知得:4=2p×1,則2p=4,由此能求出拋物線方程.
(2)由 與直線AB聯(lián)立方程組,再由根的判別式和韋達定理進行求解.
(1)解: ;(2)考點:
點評:解決該試題的關鍵是解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分) 已知動圓過定點,且與直線相切,橢圓 的對稱軸為坐標軸,一個焦點是,點在橢圓上.
(Ⅰ)求動圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動直線與軌跡處的切線平行,且直線與橢圓交于兩點,問:是否存在著這樣的直線使得的面積等于?如果存在,請求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點A,B是雙曲線上的兩點,O為原點,若,則點O到
直線AB的距離為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設拋物線y2 = 8x的準線與x軸交于點Q,若過點Q的直線與拋物線有公共點,則直線的斜率的取值范圍是(   )
A.[-,]B.[-2 , 2 ]C.[-1 , 1 ]D.[-4 , 4 ]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的對稱軸為坐標軸,焦點在軸上,離心率,分別為橢圓的上頂點和右頂點,且
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓相交于兩點,且(其中為坐標原點),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓和圓,若上存在點,使得過點引圓的兩條切線,切點分別為,滿足,則橢圓的離心率的取值范圍是        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的離心率為,則         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,過點且被點平分的橢圓的弦所在的直線方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓錐曲線的離心率e為方程的兩根,則滿足條件的圓錐曲線的條數(shù)為      (    )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案