已知函數(shù).
(1)求函數(shù)上的最大值和最小值;
(2)求證:當(dāng)時,函數(shù)的圖像在的下方.

(1)的最小值是,最大值是;(2)證明詳見解析.

解析試題分析:(1)先求導(dǎo)函數(shù),由導(dǎo)函數(shù)的符號確定上的單調(diào)性,進(jìn)而確定函數(shù)的最值即可;(2)本題的實質(zhì)是證明在區(qū)間恒成立,然后利用導(dǎo)數(shù)研究其最大值即可.
試題解析:(1)∵,∴
時,,故上是增函數(shù)
的最小值是,最大值是
(2)證明:令


當(dāng)時,,而

上是減函數(shù)
,即
∴當(dāng)時,函數(shù)的圖像總在的圖像的下方.
考點:函數(shù)的最值與導(dǎo)數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

規(guī)定[t]為不超過t的最大整數(shù),例如[12.6]=12,[-3.5]=-4,對任意實數(shù)x,令f1(x)=[4x],g(x)=4x-[4x],進(jìn)一步令f2(x)=f1[g(x)].
(1)若x=,分別求f1(x)和f2(x);
(2)若f1(x)=1,f2(x)=3同時滿足,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的三內(nèi)角分別為,向量
,記函數(shù).
(1)若,求的面積;
(2)若關(guān)于的方程有兩個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點的連線的斜率小于l,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象過點.
(1)求實數(shù)的值; 
(2)求函數(shù)的最小正周期及最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:若上為增函數(shù),則稱為“k次比增函數(shù)”,其中. 已知其中e為自然對數(shù)的底數(shù).
(1)若是“1次比增函數(shù)”,求實數(shù)a的取值范圍;
(2)當(dāng)時,求函數(shù)上的最小值;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是實數(shù),函數(shù)).
(1)求證:函數(shù)不是奇函數(shù);
(2)當(dāng)時,求滿足的取值范圍;
(3)求函數(shù)的值域(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,不等式的解集為.
(1)求的值;
(2)若對一切實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.

查看答案和解析>>

同步練習(xí)冊答案