【題目】如圖,正方形所在平面與四邊形所在平面互相重直,是等腰直角三角形,,,.

1)求證:平面;

2)設(shè)線段、的中點(diǎn)分別為、,求所成角的正弦值;

3)求二面角的平面角的正切值.

【答案】1)見解析;(2;(3.

【解析】

1)證明,然后證明平面;

2)取的中點(diǎn),連接、,證明,說(shuō)明所成角為或其補(bǔ)角,在,求解的正弦值即可;

3)說(shuō)明為二面角的平面角.設(shè),則,在中與在中,求解二面角的平面角的正切值.

1)因?yàn)樗倪呅?/span>為矩形,則

因?yàn)槠矫?/span>平面,平面平面,平面,

平面

平面,.

因?yàn)?/span>為等腰直角三角形,,所以

又因?yàn)?/span>,,即

,因此,平面;

2)取的中點(diǎn),連接、

四邊形為正方形,則

、分別為、的中點(diǎn),,

的中點(diǎn),,

則四邊形為平行四邊形,,

所以所成的角為或其補(bǔ)角,

由(1)知,平面,平面,

設(shè),則,,

中,.

因此,所成角的正弦值為;

3,平面平面,平面平面,平面平面.

,交的延長(zhǎng)線于,則.從而,平面

,連接

平面,平面,

,平面,

平面,,所以,為二面角的平面角.

,,

設(shè),則,,

中,,,

中,.

因此,二面角的平面角的正切值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計(jì)出這些試卷總分,由總分得到如下的頻率分別直方圖.

(1)求這100份數(shù)學(xué)試卷成績(jī)的中位數(shù);

(2)從總分在的試卷中隨機(jī)抽取2份試卷,求抽取的2份試卷中至少有一份總分少于65分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,均為正的常數(shù))的最小正周期為,當(dāng)時(shí),函數(shù)取得最小值,則下列結(jié)論正確的是(

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績(jī)與物理成績(jī)如下表:

數(shù)據(jù)表明之間有較強(qiáng)的線性關(guān)系.

(1)求關(guān)于的線性回歸方程;

(2)該班一名同學(xué)的數(shù)學(xué)成績(jī)?yōu)?10分,利用(1)中的回歸方程,估計(jì)該同學(xué)的物理成績(jī);

(3)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到125分為優(yōu)秀,物理成績(jī)達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):回歸直線的系數(shù),.

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>

1)一年中有31天的月份的全體;

2)大于小于12.8的整數(shù)的全體;

3)梯形的全體構(gòu)成的集合;

4)所有能被3整除的數(shù)的集合;

5)方程的解組成的集合;

6)不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位計(jì)劃建造一間背面靠墻的小屋,其地面面積為12m2,墻面的高度為3m,經(jīng)測(cè)算,屋頂?shù)脑靸r(jià)為5800元,房屋正面每平方米的造價(jià)為1200元,房屋側(cè)面每平方米的造價(jià)為800元,設(shè)房屋正面地面長(zhǎng)方形的邊長(zhǎng)為m,房屋背面和地面的費(fèi)用不計(jì).

1)用含的表達(dá)式表示出房屋的總造價(jià);

2)當(dāng)為多少時(shí),總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大連市某企業(yè)為確定下一年投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

573

6.8

289.8

1.6

215083.4

31280

表中,.

根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)

根據(jù)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

已知這種產(chǎn)品的年利潤(rùn)、的關(guān)系為.根據(jù)的結(jié)果回答下列問(wèn)題:

年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半圓的直徑,為圓心,,為半圓上的點(diǎn).

(Ⅰ)請(qǐng)你為點(diǎn)確定位置,使的周長(zhǎng)最大,并說(shuō)明理由;

(Ⅱ)已知,設(shè),當(dāng)為何值時(shí),

(ⅰ)四邊形的周長(zhǎng)最大,最大值是多少?

(ⅱ)四邊形的面積最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)滿足,的虛部為2,

1)求復(fù)數(shù);

2)設(shè)在復(fù)平面上對(duì)應(yīng)點(diǎn)分別為,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案