【題目】已知復(fù)數(shù)滿足,的虛部為2

1)求復(fù)數(shù);

2)設(shè)在復(fù)平面上對應(yīng)點分別為,求的面積.

【答案】1;(21

【解析】

1)設(shè)za+bia,bR),由已知列關(guān)于a,b的方程組,求解可得復(fù)數(shù)z

2)分類求得A、BC的坐標(biāo),再由三角形面積公式求解.

解:(1)設(shè)za+bia,bR),

由已知可得:,即

解得

z1+iz=﹣1i;

2)當(dāng)z1+i時,z22i,zz21i

A1,1),B0,2),C1,﹣1),

故△ABC的面積S2×11;

當(dāng)z=﹣1i時,z22izz2=﹣13i,

A(﹣1,﹣1),B0,2),C(﹣1,﹣3),

故△ABC的面積S2×11

∴△ABC的面積為1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,a、b、c分別是角A、B、C的對邊,向量=(2sinB,2-cos2B),=(2sin2( ),-1),.

(1)求角B的大;

(2)若a= ,b=1,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是正四面體的平面展開圖,分別是的中點,在這個正四面體中:①平行;②為異面直線;③成60°角;④垂直.以上四個命題中,正確命題的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向左平移1個單位,再將圖象上的所有點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

1)求函數(shù)的解析式和定義域;

2)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,若直線與曲線相切;

1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)在曲線上取兩點與原點構(gòu)成,且滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個旅行者的如下信息:

①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h;

②騎自行車者是變速運動,騎摩托車者是勻速運動;

③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;

④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.

其中,正確信息的序號是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某跨國飲料公司在對全世界所有人均GDP(即人均純收入)在千美元的地區(qū)銷售該公司A飲料的情況調(diào)查時發(fā)現(xiàn):該飲料在人均GDP處于中等的地區(qū)銷售量最多,然后向兩邊遞減.

1)下列幾個模擬函數(shù):①;②;③;④x表示人均GDP,單位:千美元,y表示年人均A飲料的銷售量,單位:L.用哪個模擬函數(shù)來描述人均A飲料銷售量與地區(qū)的人均GDP關(guān)系更合適?說明理由;

2)若人均GDP1千美元時,年人均A飲料的銷售量為,人均4千美元時,年人均A飲料的銷售量為,把(1)中你所選的模擬函數(shù)求出來,并求出各個地區(qū)年人均A飲料的銷售量最多是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某貧困地區(qū)扶貧辦積極貫徹落實國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加,為了更好的制定2019年關(guān)于加快提升農(nóng)民年收入力爭早日脫貧的工作計劃,該地扶貧辦隨機(jī)統(tǒng)計了2018年50位農(nóng)民的年收入并制成如下頻率分布直方圖:

(Ⅰ)根據(jù)頻率分布直方圖,估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);

(Ⅱ)由頻率分布直方圖可認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求:

(i)在2018年脫貧攻堅工作中,該地區(qū)約有的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每個農(nóng)民的年收入相互獨立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)約為多少?

參考數(shù)據(jù):.若,則;.

查看答案和解析>>

同步練習(xí)冊答案