【題目】我們稱一個非負(fù)整數(shù)集合(非空)為好集合,若對任意,或者,或者.以下記為的元素個數(shù).
(Ⅰ)給出所有的元素均小于的好集合;(給出結(jié)論即可)
(Ⅱ)求出所有滿足的好集合;(同時說明理由)
(Ⅲ)若好集合滿足,求證: 中存在元素,使得中所有元素均為的整數(shù)倍.
【答案】(Ⅰ).(Ⅱ)見解析;.(Ⅲ)見解析.
【解析】試題分析:(1)根據(jù)題意得到集合為;(2)設(shè),其中,則由題意: ,故,即,根據(jù)題干中的條件限制元素特性,進(jìn)而找到滿足條件的好集合;(3)通過歸納可得到結(jié)果.
解析:
(Ⅰ).
(Ⅱ)設(shè),其中,則由題意: ,故,即.
考慮,可知,所以或.
若,則考慮,由于,所以,因此.
所以.但此時考慮,但,不滿足題意.
若,此時滿足題意.
所以,其中為相異正整數(shù).
(Ⅲ)記,則.
首先, .設(shè),其中.
分別考慮和其他任一元素,由題意可得也在中.
而,
所以,所以.
對于,考慮,其和大于,故其差.
特別的, ,所以.
由,且,所以,
通過歸納可得: .
所以,此時.得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,過任作一條與坐標(biāo)軸都不垂直的直線,與交于兩點,且的周長為.當(dāng)直線的斜率為時,與軸垂直
(1)求橢圓的方程
(2)若是該橢圓上位于第一象限的一點,過作圓的切線,切點為,求的值;
(3)設(shè)為定點,直線過點與軸交于點,且與橢圓交于兩點,設(shè),,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(,)的部分圖象如圖中實線所示,圖中圓C與的圖象交于M,N兩點,且M在y軸上,則下列說法中正確的是( )
A.函數(shù)的最小正周期是2π
B.函數(shù)的圖象關(guān)于點成中心對稱
C.函數(shù)在單調(diào)遞增
D.將函數(shù)的圖象向左平移后得到的關(guān)于y軸對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買菜”受追捧.某電商平臺在地區(qū)隨機(jī)抽取了位居民進(jìn)行調(diào)研,獲得了他們每個人近七天“線上買菜”消費(fèi)總金額(單位:元),整理得到如圖所示頻率分布直方圖.
(1)求的值;
(2)從“線上買菜”消費(fèi)總金額不低于元的被調(diào)研居民中,隨機(jī)抽取位給予獎品,求這位“線上買菜”消費(fèi)總金額均低于元的概率;
(3)若地區(qū)有萬居民,該平臺為了促進(jìn)消費(fèi),擬對消費(fèi)總金額不到平均水平一半的居民投放每人元的電子補(bǔ)貼.假設(shè)每組中的數(shù)據(jù)用該組區(qū)間的中點值代替,試根據(jù)上述頻率分布直方圖,估計該平臺在地區(qū)擬投放的電子補(bǔ)貼總金額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某單位45名職工中隨機(jī)抽取5名職工參加一項社區(qū)服務(wù)活動,用隨機(jī)數(shù)法確定這5名職工現(xiàn)將隨機(jī)數(shù)表摘錄部分如下:
從隨機(jī)數(shù)表第一行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出的第5個職工的編號為
A.23B.37C.35D.17
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點是函數(shù)的圖象的一個對稱中心,且點到該圖象的對稱軸的距離的最小值為.
①的最小正周期是;
②的值域為;
③的初相為;
④在上單調(diào)遞增.
以上說法正確的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點,圓,點是圓上一動點,線段的中垂線與線段交于點.
(1)求動點的軌跡的方程;
(2)若直線與曲線相交于兩點,且存在點(其中不共線),使得被軸平分,證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三角形內(nèi),我們將三條邊的中線的交點稱為三角形的重心,且重心到任一頂點的距離是到對邊中點距離的兩倍類比上述結(jié)論:在三棱錐中,我們將頂點與對面重心的連線段稱為三棱錐的“中線”,將三棱錐四條中線的交點稱為它的“重心”,則棱錐重心到頂點的距離是到對面重心距離的______倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點曲線的一個焦點, 為坐標(biāo)原點,點為拋物線上任意一點,過點作軸的平行線交拋物線的準(zhǔn)線于,直線交拋物線于點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求證:直線過定點,并求出此定點的坐標(biāo).
【答案】(I);(II)證明見解析.
【解析】試題分析:(Ⅰ)將曲線化為標(biāo)準(zhǔn)方程,可求得的焦點坐標(biāo)分別為,可得,所以,即拋物線的方程為;(Ⅱ)結(jié)合(Ⅰ),可設(shè),得,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得,直線的方程為,整理得的方程為,此時直線恒過定點.
試題解析:(Ⅰ)由曲線,化為標(biāo)準(zhǔn)方程可得, 所以曲線是焦點在軸上的雙曲線,其中,故, 的焦點坐標(biāo)分別為,因為拋物線的焦點坐標(biāo)為,由題意知,所以,即拋物線的方程為.
(Ⅱ)由(Ⅰ)知拋物線的準(zhǔn)線方程為,設(shè),顯然.故,從而直線的方程為,聯(lián)立直線與拋物線方程得,解得
①當(dāng),即時,直線的方程為,
②當(dāng),即時,直線的方程為,整理得的方程為,此時直線恒過定點, 也在直線的方程為上,故直線的方程恒過定點.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù),
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)若數(shù)列滿足, ,記的前項和為,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com