(本小題滿分12分)
如圖,拋物線的頂點為坐標(biāo)原點
,焦點
在
軸上,準(zhǔn)線
與圓
相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點在拋物線
上,且
,求點
的坐標(biāo).
(1) (2)
或
.
解析試題分析:解:(Ⅰ)依題意,可設(shè)拋物線的方程為
,
其準(zhǔn)線的方程為
. ………………………… 2分
∵準(zhǔn)線與圓
相切,
∴所以圓心到直線
的距離
,解得
. ……… 4分
故拋物線的方程為:
. ………………………… 5分
(Ⅱ)設(shè),
,則
…………① …………………… 6分
∵,
,
,
,
∴,
即 …………② ………………… 9分
②代入①,得,
,
又,所以
,解得
,
,
即或
. ………………………… 12分
考點:拋物線方程,直線與圓錐曲線位置關(guān)系
點評:能熟練運用性質(zhì)求解方程,并結(jié)合向量的坐標(biāo),聯(lián)立方程組求解得到,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共12分)
如圖,已知直線l與拋物線相切于點P(2,1),且與x軸交于點A,O為坐標(biāo)原點,
定點B的坐標(biāo)為(2,0).
(1)若動點M滿足,求點M的軌跡C;
(2)若過點B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在平面直角坐標(biāo)系中,點
到兩定點F1
和F2
的距離之和為
,設(shè)點
的軌跡是曲線
.(1)求曲線
的方程; (2)若直線
與曲線
相交于不同兩點
、
(
、
不是曲線
和坐標(biāo)軸的交點),以
為直徑的圓過點
,試判斷直線
是否經(jīng)過一定點,若是,求出定點坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的離心率為
,短軸一個端點到右焦點的距離為
.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓
交于
兩點,坐標(biāo)原點
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)設(shè)橢圓E: (a,b>0)過M(2,
) ,N(
,1)兩點,O為坐標(biāo)原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且?若存在,寫出該圓的方程,若不存在說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
拋物線頂點在坐標(biāo)原點,焦點與橢圓的右焦點
重合,過點
斜率為
的直線與拋物線交于
,
兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,拋物線C的頂點在原點,焦點F的坐標(biāo)為(1,0)。
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)M、N是拋物線C的準(zhǔn)線上的兩個動點,且它們的縱坐標(biāo)之積為,直線MO、NO與拋物線的交點分別為點A、B,求證:動直線AB恒過一個定點。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
拋物線的頂點在原點,焦點在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點,且。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點C,使得三角形ABC是正三角形? 若存在,求出點C的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點在坐標(biāo)原點,它的準(zhǔn)線經(jīng)過雙曲線
:
的左焦點
且垂直于
的兩個焦點所在的軸,若拋物線
與雙曲線
的一個交點是
.
(1)求拋物線的方程及其焦點
的坐標(biāo);
(2)求雙曲線的方程及其離心率
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com