【題目】已知各項均為正數(shù)數(shù)列的前項和滿足.
(1)求數(shù)列的通項公式;;
(2)若數(shù)列滿足,求數(shù)列的前項和.
【答案】(1);(2).
【解析】試題分析:(1)由得,∴,于是可得,;(2)根據(jù)(1)求得,
∴,利用裂項相消法可求得數(shù)列的前項和.
試題解析:(1)∵,
∴.
又數(shù)列各項均為正數(shù),
∴,∴,∴.
當時,;
當時,,
又∵也滿足上式,∴.
(2)據(jù)(1)求解,得,
∴.
∴數(shù)列的前項和
.
【方法點晴】本題主要考查等差數(shù)列的通項以及裂項相消法求數(shù)列的和,屬于中檔題. 裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2) ; (3);(4) ;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.
科目:高中數(shù)學 來源: 題型:
【題目】設是奇函數(shù),是偶函數(shù),且其中.
(1)求和的表達式,并求函數(shù)的值域
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不等實根,求常數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將直線2x-y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實數(shù)λ的值為( )
A.-3或7B.-2或8
C.0或10D.1或11
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列的前項和為,且(是常數(shù),),.
(1)求的值及數(shù)列的通項公式;
(2)設,數(shù)列的前項和為,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,為橢圓的一個焦點,離心率,過作兩條互相垂直的直線,, 與橢圓交于兩點,與橢圓交于兩點,且四點在橢圓上逆時針分布.
(1)求橢圓的標準方程;
(2)求四邊形面積的最大值與最小值的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,已知點A(1,0)和點B(﹣1,0),,且∠AOC=x,其中O為坐標原點.
(1)若x=,設點D為線段OA上的動點,求的最小值;
(2)若R,求的最大值及對應的x值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓C:的右準線方程為,右頂點為.
求橢圓C的方程;
若M,N是橢圓C上不同于A的兩點,點P是線段MN的中點.
如圖1,若為等腰直角三角形且直角頂點P在x軸上方,求直線MN的方程;
如圖2所示,點Q是線段NA的中點,若且的角平分線與x軸垂直,求直線AM的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩支球隊進行總決賽,比賽采用七場四勝制,即若有一隊先勝四場,則此隊為總冠軍,比賽就此結(jié)束.因兩隊實力相當,每場比賽兩隊獲勝的可能性均為.據(jù)以往資料統(tǒng)計,第一場比賽可獲得門票收入40萬元,以后每場比賽門票收入比上一場增加10萬元.
(I)求總決賽中獲得門票總收入恰好為300萬元的概率;
(II)設總決賽中獲得門票總收入為X,求X的均值E(X).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線恒過定點.
(Ⅰ)若直線經(jīng)過點且與直線垂直,求直線的方程;
(Ⅱ)若直線經(jīng)過點且坐標原點到直線的距離等于3,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com