8.設(shè)點(diǎn)P是曲線y=x3-$\sqrt{3}$x+$\frac{2}{3}$上的任意一點(diǎn),在P點(diǎn)處切線傾斜角a的取值范圍.

分析 求出函數(shù)的導(dǎo)數(shù),由二次函數(shù)的性質(zhì)可得切線斜率范圍,結(jié)合正切函數(shù)圖象即可得到所求傾斜角的范圍.

解答 解:因y′=3x2-$\sqrt{3}$≥-$\sqrt{3}$,
故切線斜率k=tana≥-$\sqrt{3}$,
則切線傾斜角a的取值范圍是[0,$\frac{π}{2}$)∪[$\frac{2π}{3}$,π).

點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和傾斜角的范圍,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)已知集合A={x|3<x<7},B={x|2<x<10},求A∪B,A∩B,∁RA
(2)計(jì)算下列各式
①$2{log_5}25+{10^{lg\sqrt{3}}}+ln{e^{({1-\sqrt{3}})}}+{({\sqrt{2}-1})^0}$
②(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.全集U={1,2,3,4,5},集合A={1,2},集合B={1,3,5},則圖中陰影部分所表示的集合是( 。
A.{1}B.{1,2,3,5}C.{ 2,3,5}D.{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(文)已知函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}的通項(xiàng)公式為an=3n-23,當(dāng)Sn取到最小時(shí),n=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合M={x|x-2>0,x∈R},N={y|y=$\sqrt{{x}^{2}+1}$,x∈R},則M∩N=(  )
A.{x|x≥1}B.{x|1≤x<2}C.{x|x>2}D.{x|x>2或x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l1:ax+by+1=0,(a,b不同時(shí)為0),l2:(a-2)x+y+a=0,若b=0且l1⊥l2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知三棱錐O-ABC,OA=4,OB=5,OC=3,∠AOB=∠BOC=60°,∠COA=90°,M,N分別是OA,BC的中點(diǎn),設(shè)$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c.
(Ⅰ)用a,b,c表示$\overrightarrow{MN}$和$\overrightarrow{AC}$;
(Ⅱ)求直線MN與直線AC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.雙曲線$\frac{x^2}{9}-{y^2}=1$的實(shí)軸長為6.

查看答案和解析>>

同步練習(xí)冊答案