【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,則下列關予函數(shù)y=g(x)的說法錯誤的是(
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對稱軸為直線x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ ]上單調遞減

【答案】D
【解析】解:把f(x)= sin2x﹣ cos2x+1=2sin(2x﹣ )+1的圖象向左平移 個單位, 得到函數(shù)y=2sin[2(x+ )﹣ ]+1=2sin(2x+ )+1的圖象,
再向下平移1個單位,得到函數(shù)y=g(x)=2sin(2x+ )的圖象,
對于A,由于T= ,故正確;
對于B,由2x+ =kπ+ ,k∈Z,解得:x= + ,k∈Z,可得:當k=0時,y=g(x)的圖象的一條對稱軸為直線x= ,故正確;
對于C, g(x)dx= 2sin(2x+ )dx=﹣cos(2x+ )| =﹣(cos ﹣cos )= ,故正確;
對于D,由2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,解得:kπ+ ≤x≤kπ+ ,k∈Z,可得函數(shù)y=g(x)在區(qū)間[ , ]上單調遞減,故錯誤.
故選:D.
利用兩角差的正弦函數(shù)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得g(x),利用正弦函數(shù)的圖象和性質逐一分析各個選項即可得解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1中,側面ABB1A1為正方形,延長AB到D,使得AD=BD,平面AA1C1C⊥平面ABB1A1 , A1C1= AA1 , ∠C1A1A=

(1)若E,F(xiàn)分別為C1B1 , AC的中點,求證:EF∥平面ABB1A1
(2)求平面A1B1C1與平面CB1D所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為

判斷直線l與圓C的交點個數(shù);

若圓C與直線l交于A,B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形中,,,,的中點,矩形所在的平面和平面互相垂直.

求證:平面

)設的中點為,求證:平面

)求三棱錐的體積.(只寫出結果,不要求計算過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知t為實數(shù),函數(shù),其中

1)若,求的取值范圍。

2)當時,的圖象始終在的圖象的下方,求t的取值范圍;

3)設,當時,函數(shù)的值域為,若的最小值為,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖甲所示,放在水平地面上的物體,受到方向不變的水平推力F的作用,F的大小與時間t的關系和物體運動速度v與時間t的關系如圖乙所示.下列判斷正確的是:

A.t3s時,物體受到力的合力為零

B.t6s時,將F撤掉,物體立刻靜止

C.2s4s內物體所受摩擦力逐漸增大

D.t1s時,物體所受摩擦力是1N

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用數(shù)學歸納法證明“能被3整除”的第二步中,時,為了使用假設,應將5k+1-2k+1變形為( ).

A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k

C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計算機在數(shù)據(jù)處理時使用的是二進制,例如十進制的1、2、3、4在二進制分別表示為1、10、11、100.下面是某同學設計的將二進制數(shù)11111化為十進制數(shù)的一個流程圖,則判斷框內應填入的條件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

同步練習冊答案