已知函數(shù)在點處取得極小值-4,使其導數(shù)的取值范圍為,求:
(1)的解析式;
(2),求的最大值;

(1)(2)當,當,當

解析試題分析:⑴ ,導數(shù)的取值范圍為,所以,點處取得極小值-4 ,聯(lián)立方程求解得,所以
,對稱軸為
時,最大值為,
時,最大值為
時,最大值為
考點:函數(shù)導數(shù)及單調性最值
點評:利用函數(shù)在極值點處導數(shù)為0來確定極值點的位置,第二問中函數(shù)含有參數(shù),求最值需按對稱軸的位置分情況討論函數(shù)取得的最值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中為正實數(shù),的一個極值點.
(Ⅰ)求的值;
(Ⅱ)當時,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

, 已知函數(shù) 
(Ⅰ) 證明在區(qū)間(-1,1)內單調遞減, 在區(qū)間(1, + ∞)內單調遞增;
(Ⅱ) 設曲線在點處的切線相互平行, 且 證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

己知函數(shù).
(I)求f(x)的極小值和極大值;
(II)當曲線y = f(x)的切線的斜率為負數(shù)時,求在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(e為自然對數(shù)的底數(shù)).
(Ⅰ)當時,求函數(shù)的單調區(qū)間;
(Ⅱ)若對于任意,不等式恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象在點處的切線斜率為
(Ⅰ)求實數(shù)的值;
(Ⅱ)判斷方程根的個數(shù),證明你的結論;
(Ⅲ)探究:是否存在這樣的點,使得曲線在該點附近的左、右的兩部分分別位于曲線在該點處切線的兩側?若存在,求出點A的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求曲線y=x2,直線y=x,y=3x圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求的最小值;
(2)若直線對任意的都不是曲線的切線,求的取值范圍;
(3)設,求的最大值的解析式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)時都取得極值
(1)求的值與函數(shù)的單調區(qū)間
(2)若對,不等式恒成立,求c的取值范圍

查看答案和解析>>

同步練習冊答案