(2012•湖北模擬)設Sn為數(shù)列{an}的前n項和為Sn=λan-1(λ,為常數(shù),n=1,2,3…).
(1)若a3=
a
2
2
,求λ的值;
(2)是否存在實數(shù)λ,使得數(shù)列{an}是等差數(shù)列?若存在,求出λ的值;若不存在,說明理由;
(3)當λ=2量,若數(shù)列{cn}滿足bn+1=an+bn(n=1,2,3,…),且b1=
2
3
,令cn=
an
(an+1)bn
,求數(shù)列{an}的前n項和Tn
分析:(1)由Sn=λan-1,知a1=
1
λ-1
,a2=
λ
(λ-1)2
,a3=
λ2
(λ-1)3
,再由a3=a22,能求出λ的值.
(2)假設存在實數(shù)λ,使得數(shù)列{an}是等差數(shù)列,則2a2=a1+a3,故
(λ-1)2
=
1
λ-1
+
λ2
(λ-1)3
,由此能夠推導出不存在實數(shù)λ,使得數(shù)列{an}是等差數(shù)列.
(3)當λ=2時,Sn=2an-1,故Sn-1=2an-1-1,n≥2,且a1=1,所以an=2n-1,n∈N*.由bn+1=an+bn(n=1,2,3,…),且b1=
2
3
,導出bn=
2n+1
2
,n∈N*,所以cn=
2n-1
(2n-1+1)•
2n+1
2
=2(
1
2n-1+1
-
1
2n+1
),由此利用裂項求和法能求出數(shù)列{an}的前n項和Tn
解答:解:(1)∵Sn=λan-1,
∴a1=λa1-1,
a2+a1=λa2-1,
a3+a2+a1=λa3-1,
由a1=λa1-1,得λ≠1,
a1=
1
λ-1
,a2=
λ
(λ-1)2
a3=
λ2
(λ-1)3
,
a3=a22,∴
λ2
(λ-1)3
=
λ2
(λ-1)4
,
∴λ=0,或λ=2.
(2)假設存在實數(shù)λ,使得數(shù)列{an}是等差數(shù)列,
則2a2=a1+a3,
由(1)得
(λ-1)2
=
1
λ-1
+
λ2
(λ-1)3

(λ-1)2
=
2-2λ+1
(λ-1)3
,解得1=0,不成立,
∴不存在實數(shù)λ,使得數(shù)列{an}是等差數(shù)列.
(3)當λ=2時,Sn=2an-1,
∴Sn-1=2an-1-1,n≥2,且a1=1,
∴an=2an-2an-1,即an=2an-1,n≥2,
an=2n-1,n∈N*
∵bn+1=an+bn(n=1,2,3,…),且b1=
2
3
,
∴bn=an-1+bn-1
=an-1+an-2+bn-2
=…=an-1+an-2+…+a1+b1
=2n-2+2n-3+…+1+
3
2

=
2n+1
2
,n≥2
當n=1時,上式仍然成立,
bn=
2n+1
2
,n∈N*,
cn=
an
(an+1)bn

cn=
2n-1
(2n-1+1)•
2n+1
2

=
2•2n-1
(2n-1+1)(2n+1)

=2(
1
2n-1+1
-
1
2n+1
),
∴Tn=c1+c2+…+cn
=2(
1
2
-
1
2+1
+
1
2+1
-
1
22+1
+…+
1
2n-1+1
-
1
2n
)

=1-
2
2n+1

=
2n-1
2n+1
點評:本題考查滿足條件的實數(shù)值的求法,考查等差數(shù)列的判斷,考查數(shù)列的前n項和的求法.解題時要認真審題,仔細解答,注意裂項求和法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•湖北模擬)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上有一個頂點到兩個焦點之間的距離分別為3+2
2
,3-2
2

(1)求橢圓的方程;
(2)如果直線x=t(t∈R)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線BD的交點K必在一條確定的雙曲線上;
(3)過點Q(1,0)作直線l(與x軸不垂直)與橢圓交于M、N兩點,與y軸交于點R,若
RM
MQ
,
RN
NQ
,證明:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北模擬)在△ABC中,M是BC的中點,AM=3,點P在AM上,且滿足
AP
=2
PM
,則
PA
•(
PB
+
PC
)
的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北模擬)已知函數(shù)y=g(x)的圖象由f(x)=sin2x的圖象向右平移φ(0<φ<π)個單位得到,這兩個函數(shù)的部分圖象如圖所示,則φ=
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北模擬)設Sn是等比數(shù)列{an}的前n項和,若S1,2S2,3S3成等差數(shù)列,則公比q等于
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北模擬)函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為正常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與坐標軸的交點處的切線互相平行.
(1)求a的值;
(2)若存在x使不等式
x-m
f(x)
x
成立,求實數(shù)m的取值范圍;
(3)對于函數(shù)y=f(x)和y=g(x)公共定義域中的任意實數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>

同步練習冊答案