在邊長(zhǎng)為的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合于B,構(gòu)成一個(gè)三棱錐(如圖所示).

(Ⅰ)在三棱錐上標(biāo)注出、點(diǎn),并判別MN與平面AEF的位置關(guān)系,并給出證明;
(Ⅱ)是線段上一點(diǎn),且,問是否存在點(diǎn)使得,若存在,求出的值;若不存在,請(qǐng)說明理由;
(Ⅲ)求多面體E-AFNM的體積.

(Ⅰ)參考解析;(Ⅱ);(Ⅲ)

解析試題分析:(Ⅰ)通過翻折可知B點(diǎn)和C點(diǎn)對(duì)應(yīng)的位置.所以可以相應(yīng)地找到M,N點(diǎn)的位置.然后說明直線與平面AEF平行.
(Ⅱ)根據(jù)題意證得直線AB平面AEF.所以只需要?jiǎng)狱c(diǎn)G與點(diǎn)B重合即可得到AB平面EGF.所以可得.本小題雖然是動(dòng)點(diǎn)的問題但是通過證明線面垂直后再把動(dòng)點(diǎn)移到特殊的位置即可.
(Ⅲ)由于AB垂直于平面BEF,所以易計(jì)算三棱錐A-BEF的體積.同時(shí)四棱錐E-AFNM的體積與三棱錐E-BMN的體積比等于它們底面積的比.體積比轉(zhuǎn)化為面積比的問題.從而可求出四棱錐E-AFMN的體積.本小題的體積求法有點(diǎn)技巧,要學(xué)會(huì)相互轉(zhuǎn)化.
試題解析:(Ⅰ)因翻折后B、C、D重合,所以MN應(yīng)是的一條中位線,如圖所示.

                            2分
證明如下:. 4分
(Ⅱ)存在點(diǎn)使得,此時(shí)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ee/9/1ijqv3.png" style="vertical-align:middle;" />面EBF
是線段上一點(diǎn),且,
∴當(dāng)點(diǎn)與點(diǎn)B重合時(shí),此時(shí)              8分
(Ⅲ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/78/7/vs2mi.png" style="vertical-align:middle;" />
,
,                   9分

           12分
考點(diǎn):1.圖形的翻折.2.線面平行.3.線面垂直.4.四棱錐的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐P­ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCDE,F分別為棱BC,AD的中點(diǎn).
 
(1)求證:DE∥平面PFB;
(2)已知二面角P­BF­C的余弦值為,求四棱錐P­ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長(zhǎng)方體中,, 沿平面把這個(gè)長(zhǎng)方體截成兩個(gè)幾何體: 幾何體(1);幾何體(2)

(I)設(shè)幾何體(1)、幾何體(2)的體積分為是、,求的比值
(II)在幾何體(2)中,求二面角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形為矩形,平面,平面于點(diǎn),且點(diǎn)上.

(1)求證:;
(2)求四棱錐的體積;
(3)設(shè)點(diǎn)在線段上,且,試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)證明:平面PAB⊥平面PBC;
(2)若,,PB與底面ABC成60°角,分別是的中點(diǎn),是線段上任意一動(dòng)點(diǎn)(可與端點(diǎn)重合),求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.

(1)求證:AC⊥BB1
(2)若P是棱B1C1的中點(diǎn),求平面PAB將三棱柱分成的兩部分體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形為矩形,平面,上的點(diǎn),且平面.

(1)求三棱錐的體積;
(2)設(shè)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面是正方形,,點(diǎn)在棱上.

(1)求證:平面平面;
(2)當(dāng),且時(shí),確定點(diǎn)的位置,即求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖.在直棱柱ABC-A1B1C1中,∠ BAC=90°,AB=AC=,AA1=3,D是BC的中點(diǎn),點(diǎn)E在菱BB1上運(yùn)動(dòng)。

(1)證明:AD⊥C1E;
(2)當(dāng)異面直線AC,C1E 所成的角為60°時(shí),求三棱錐C1-A1B1E的體積

查看答案和解析>>

同步練習(xí)冊(cè)答案