精英家教網 > 高中數學 > 題目詳情

【題目】學校計劃舉辦“國學”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動,在活動前,對所選的10名同學進行了國學素養(yǎng)測試,這10名同學的性別和測試成績(百分制)的莖葉圖如圖所示.

(1)分別計算這10名同學中,男女生測試的平均成績;

(2)若這10名同學中,男生和女生的國學素養(yǎng)測試成績的標準差分別為S1,S2,試比較S1S2的大。ú槐赜嬎悖恍柚苯訉懗鼋Y果);

(3)規(guī)定成績大于等于75分為優(yōu)良,從這10名同學中隨機選取一男一女兩名同學,求這兩名同學的國學素養(yǎng)測試成績均為優(yōu)良的概率.

【答案】(1)男生73.75;女生76;(2) S1S2.(3)

【解析】

1)利用平均數的計算公式,分別計算出男生女生的平均成績.2)由于男生成績比較集中,女生成績比較分散,故.3)利用列舉法列舉出所有的基本事件總數,從中得出兩名同學的國學素養(yǎng)測試成績均為優(yōu)良的事件總數,根據古典概型概率計算公式計算出所求概率.

(1)由莖葉圖得男生測試的平均成績?yōu)椋?/span>

=64+76+77+78=73.75,

女生測試的平均成績?yōu)椋?/span>=56+79+76+70+88+87=76

(2)由莖葉圖觀察得S1S2

(3)設兩名學生的成績均這優(yōu)良為事件A

男生按成績由低到高依次為64,76,77,78,

女生按成績由低到高依次為56,70,76,79,8788,

則從10名學生中隨機選取一男一女兩名同學共有24種方取法:

{64,56},{6470},{64,76},{64,79},{64,87}{64,88},

{7656},{76,70},{76,76},{76,79},{7687},{7688},

{7756},{77,70},{77,76}{77,79},{77,87}{77,88}

{78,56}{78,70}{78,76},{7879},{78,87}{78,88}

成績大于等于75分為優(yōu)良,

∴其中兩名均為優(yōu)良的取法有12種取法,分別為:

{7676},{76,79},{76,87},{76,88}{77,76},{77,79},

{77,87},{7788},{78,76}{78,79}{78,87},{78,88},

則這兩名同學的國學素養(yǎng)測試成績均為優(yōu)良的概率

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員在籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據統(tǒng)計結果繪制如下頻率分

布直方圖:

(1)依據頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數;

(2)若從該運動員投籃命中時,他到籃筐中心的水平距離為2到5米的這三組中,用分層抽樣的方法抽取7次成績(單位:米,運動員投籃命中時,他到籃筐中心的水平距離越遠越好),并從抽到的這7次成績中隨機抽取2次.規(guī)定:這2次成績均來自到籃筐中心的水平距離為4到5米的這一組,記 1分,否則記0分.求該運動員得1分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:

為事件:“乙離子殘留在體內的百分比不低于”,根據直方圖得到的估計值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區(qū)間的中點值為代表).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小組為了研究晝夜溫差對一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實驗室每天每100顆種子的發(fā)芽數,得到如下資料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

溫差

9

10

11

8

12

發(fā)芽數(顆)

38

30

24

41

17

利用散點圖,可知線性相關。

(1)求出關于的線性回歸方程,若4月6日星夜溫差,請根據你求得的線性同歸方程預測4月6日這一天實驗室每100顆種子中發(fā)芽顆數;

(2)若從4月1日 4月5日的五組實驗數據中選取2組數據,求這兩組恰好是不相鄰兩天數據的概率.

(公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市規(guī)定,高中學生在校期間須參加不少于80小時的社區(qū)服務才合格.某校隨機抽取20位學生參加社區(qū)服務的數據,按時間段(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.

(1)求抽取的20人中,參加社區(qū)服務時間不少于90小時的學生人數;

(2)從參加社區(qū)服務時間不少于90小時的學生中任意選取2人,求所選學生的參加社區(qū)服務時間在同一時間段內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有人,現采用分層抽樣的方法,從該單位上述員工中抽取人調查專項附加扣除的享受情況.

(Ⅰ)應從老、中、青員工中分別抽取多少人?

(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如右表,其中“”表示享受,“×”表示不享受.現從這6人中隨機抽取2人接受采訪.

員工

項目

A

B

C

D

E

F

子女教育

×

×

繼續(xù)教育

×

×

×

大病醫(yī)療

×

×

×

×

×

住房貸款利息

×

×

住房租金

×

×

×

×

×

贍養(yǎng)老人

×

×

×

(i)試用所給字母列舉出所有可能的抽取結果;

(ii)設為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校學生中隨機抽取了100人,發(fā)現樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:

交付金額(元)

支付方式

0,1000]

1000,2000]

大于2000

僅使用A

18

9

3

僅使用B

10

14

1

(Ⅰ)從全校學生中隨機抽取1人,估計該學生上個月A,B兩種支付方式都使用的概率;

(Ⅱ)從樣本僅使用A和僅使用B的學生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數,求X的分布列和數學期望;

(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用A的學生中,隨機抽查3人,發(fā)現他們本月的支付金額都大于2000元.根據抽查結果,能否認為樣本僅使用A的學生中本月支付金額大于2000元的人數有變化?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠生產的產品在出廠前都要做質量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現有10件產品,其中6件是一等品,4件是二等品.

(Ⅰ) 隨機選取1件產品,求能夠通過檢測的概率;

(Ⅱ)隨機選取3件產品,其中一等品的件數記為,求的分布列;

(Ⅲ)隨機選取3件產品,求這三件產品都不能通過檢測的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)當時,求曲線在點處的切線方程;

(2)當時,設函數,且函數有且僅有一個零點,若當時, 恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案