已知直線
,則拋物線
上到直線距離最小的點的坐標為( )
試題分析:設(shè)拋物線
上一點
,則這點到直線的距離為
,當
時,
取得最小值
,所以所求的點為
。故選B。
點評:求最短或最長距離,常結(jié)合二次函數(shù)的性質(zhì)和基本不等式進行求解。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知半橢圓
與半橢圓
組成的曲線稱為“果圓”,其中
,
是對應(yīng)的焦點。A
1,A
2和B
1,B
2是“果圓”與x,y軸的交點,M是線段A
1A
2的中點.
(1) 若三角形
是底邊F
1F
2長為6,腰長為5的等腰三角形,求“果圓”的方程;
(2)若“果圓”方程為:
,
過F
0的直線l交“果圓”于y軸右邊的Q,N點,求△OQN的面積S
△OQN的取值范圍
(3) 若
是“果圓”上任意一點,求
取得最小值時點
的橫坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共14分)
已知
,動點
到定點
的距離比
到定直線
的距離小
.
(I)求動點
的軌跡
的方程;
(Ⅱ)設(shè)
是軌跡
上異于原點
的兩個不同點,
,求
面積的最小值;
(Ⅲ)在軌跡
上是否存在兩點
關(guān)于直線
對稱?若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本大題滿分14分)如圖,F(xiàn)為雙曲線C:
的右焦點。P為雙曲線C右支上一點,且位于
軸上方,M為左準線上一點,
為坐標原點。已知四邊形
為平行四邊形,
。
(Ⅰ)寫出雙曲線C的離心率
與
的關(guān)系式;
(Ⅱ)當
時,經(jīng)過焦點F且品行于OP的直線交雙曲線于A、B點,若
,求此時的雙曲線方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
與拋物線
有公共點,則實數(shù)
a的取值范圍是_____________;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
、
為拋物線
上的不同兩點,
為拋物線
的焦點,若
則直線
的斜率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
的焦點為
,過F
2垂直于x軸的直線交橢圓于一點P,那么|PF
1|的值是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
Suppose the least distance fron poinrs of the xurve(曲線)
to the y-axis is
then the velue of a is
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
曲線
在
處的切線的斜率是( )
查看答案和解析>>