畫(huà)出不等式組表示的平面區(qū)域.

 

如圖

 

【解析】不等式xy5≥0表示直線xy50上及右下方的點(diǎn)的集合xy≥0表示直線xy0上及右上方的點(diǎn)的集合,x3表示直線x3上及左方的點(diǎn)的集合,所以不等式組表示的平面區(qū)域如下圖所示.

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第四章第2課時(shí)練習(xí)卷(解析版) 題型:填空題

已知e1e2是兩個(gè)不共線向量,3e12e22e15e2,λe1e2.若三點(diǎn)A、B、D共線λ________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第3課時(shí)練習(xí)卷(解析版) 題型:填空題

若不等式4x29y22kxy對(duì)一切正數(shù)x、y恒成立,則整數(shù)k的最大值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:解答題

設(shè)z2y2x4,其中x、y滿足條件z的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:解答題

某公司計(jì)劃2013年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過(guò)300分鐘的廣告廣告總費(fèi)用不超過(guò)9萬(wàn)元,甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500/分鐘和200/分鐘,規(guī)定甲、乙兩個(gè)電視臺(tái)為該公司所做的每分鐘廣告能給公司帶來(lái)的收益分別為0.3萬(wàn)元和0.2萬(wàn)元.問(wèn)該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間才能使公司的收益最大,最大收益是多少萬(wàn)元?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第2課時(shí)練習(xí)卷(解析版) 題型:填空題

若點(diǎn)P(a3)2xy<3表示的區(qū)域內(nèi),則實(shí)數(shù)a的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第六章第1課時(shí)練習(xí)卷(解析版) 題型:填空題

已知f(x)是定義域?yàn)?/span>R的偶函數(shù)當(dāng)x≥0時(shí),f(x)x24x,那么不等式f(x2)<5的解集是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第6課時(shí)練習(xí)卷(解析版) 題型:解答題

在直四棱柱ABCD-A1B1C1D1,AA12底面是邊長(zhǎng)為1的正方形,EF分別是棱B1B、DA的中點(diǎn).

(1)求二面角D1-AE-C的大;

(2)求證:直線BF∥平面AD1E.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第八章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

在如圖所示的多面體中,已知正三棱柱ABCA1B1C1的所有棱長(zhǎng)均為2,四邊形ABDC是菱形.

(1)求證:平面ADC1⊥平面BCC1B1;

(2)求該多面體的體積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案