【題目】已知=).

()當(dāng)=2時(shí),求函數(shù)在(1,)處的切線方程;

()若≥1時(shí),≥0,求實(shí)數(shù)的取值范圍.

【答案】)(-∞,2]

【解析】() 當(dāng)=2時(shí),=,所以=0,

=

函數(shù)在(1,)處的切線斜率=0,

函數(shù)在(1,)處的切線方程為 ……5分

() ≥1時(shí),=≥0,

=,……6分

設(shè)=

=, ……7分

當(dāng)時(shí),≥0(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),在(1,+∞)上是增函數(shù),

當(dāng)≥1時(shí),=0,在(1,+∞)上是增函數(shù),

當(dāng)≥1時(shí),=0;……9分

當(dāng)>2時(shí),當(dāng)1<時(shí),<0,在(1,)是減函數(shù),

當(dāng)1<時(shí),=0,在(1,)是減函數(shù),

當(dāng)1<時(shí),=0,不滿足題中條件,……11分

實(shí)數(shù)的取值范圍為(-∞,2]. ……12分

請(qǐng)考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個(gè)題目計(jì)分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,⊥平面,且四邊形是平行四邊形.

(1)求證:;

(2)當(dāng)點(diǎn)的什么位置時(shí),使得∥平面,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,B兩名同學(xué)在5次數(shù)學(xué)考試中的成績(jī)統(tǒng)計(jì)如下面的莖葉圖所示,若A,B兩人的平均成績(jī)分別是xA , xB , 觀察莖葉圖,下列結(jié)論正確的是(
A.xA<xB , B比A成績(jī)穩(wěn)定
B.xA>xB , B比A成績(jī)穩(wěn)定
C.xA<xB , A比B成績(jī)穩(wěn)定
D.xA>xB , A比B成績(jī)穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量, ,設(shè)函數(shù),且的圖象過點(diǎn)和點(diǎn).

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個(gè)單位后得到函數(shù)的圖象.若的圖象上各最高點(diǎn)到點(diǎn)的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=().

(Ⅰ)當(dāng)=-3時(shí),求的極值;

(Ⅱ)當(dāng)>1時(shí),0,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第十三屆全運(yùn)會(huì)將2017年9月在天津舉行,組委會(huì)在2017年1月對(duì)參加接待服務(wù)的10名賓館經(jīng)理進(jìn)行為期半月的培訓(xùn),培訓(xùn)結(jié)束,組織了一次培訓(xùn)結(jié)業(yè)測(cè)試,10人考試成績(jī)?nèi)缦拢M分100分):

75 84 65 90 88 95 78 85 98 82

(Ⅰ)以成績(jī)的十位為莖、個(gè)位為葉作出本次結(jié)業(yè)成績(jī)的莖葉圖,并計(jì)算平均成績(jī)與成績(jī)的中位數(shù) ;

(Ⅱ)從本次成績(jī)?cè)?5分以上(含85分)的學(xué)員中任選2人,2人成績(jī)都在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,DA⊥AB,

DE1,ECEA2,

∠ADC∠BEC.

(Ⅰ)sin∠CED的值;

(Ⅱ)BE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,一個(gè)動(dòng)圓截直線所得的弦長(zhǎng)分別為8,4.

(1)求動(dòng)圓圓心的軌跡方程;

(2)在軌跡上是否存在這樣的點(diǎn):它到點(diǎn)的距離等于到點(diǎn)的距離?若存在,求出這樣的點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案