設(shè)數(shù)列的前項(xiàng)和為,,,,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.
(Ⅰ);(Ⅱ)。
解析試題分析:(Ⅰ)當(dāng)時(shí),,解得,與已知相符。
當(dāng)時(shí),,
整理得:
即,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1c/7/yggcq1.png" style="vertical-align:middle;" />,所以
所以數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列
所以
(Ⅱ)由(Ⅰ)得
所以
兩式相減得:
所以。
考點(diǎn):本題主要考查等差數(shù)列的的基礎(chǔ)知識(shí),“錯(cuò)位相減法”。
點(diǎn)評:中檔題,本題綜合考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識(shí),本解答從確定通項(xiàng)公式入手,明確了所研究數(shù)列的特征!胺纸M求和法”、“錯(cuò)位相消法”、“裂項(xiàng)相消法”是高考常常考到數(shù)列求和方法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知首項(xiàng)為的等比數(shù)列的前n項(xiàng)和為, 且成等差數(shù)列.
(Ⅰ) 求數(shù)列的通項(xiàng)公式;
(Ⅱ) 證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列前n項(xiàng)和,且.
(Ⅰ)試求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
(1)求通項(xiàng)公式(2)設(shè),求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于無窮數(shù)列和函數(shù),若,則稱是數(shù)列的母函數(shù).
(Ⅰ)定義在上的函數(shù)滿足:對任意,都有,且;又?jǐn)?shù)列滿足:.
求證:(1)是數(shù)列的母函數(shù);
(2)求數(shù)列的前項(xiàng)和.
(Ⅱ)已知是數(shù)列的母函數(shù),且.若數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為,=1,且.
(1)求,的值,并求數(shù)列的通項(xiàng)公式;
(2)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)數(shù)列的前項(xiàng)和為,且 .
(1)求的值及數(shù)列的通項(xiàng)公式;
(2)求證:;
(3)是否存在非零整數(shù),使不等式
對一切都成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和,已知,且構(gòu)成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com