【題目】已知函數(shù)的圖象如圖所示.
(Ⅰ)求的值;
(Ⅱ)若函數(shù)在處的切線方程為,求函數(shù)的解析式;
(Ⅲ)在(Ⅱ)的條件下,函數(shù)與的圖象有三個不同的交點,求的取值范圍.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)
【解析】試題分析:(I)由圖可知函數(shù)的圖象過點(0,3),即,且,由此列方程組可求得.(II)由(I)知,將代入切線方程,求得切點坐標(biāo)為,即,且切線的斜率為,即,由此建立方程組,求得.(III)由(II)知.將原問題轉(zhuǎn)化為: 有三個不等實根,即: 與軸有三個交點,只需要其極大值大于零,極小值小于零,利用導(dǎo)數(shù)求出的極值,列不等組即可求得的取值范圍.
試題解析:
函數(shù)的導(dǎo)函數(shù)為
(Ⅰ)由圖可知函數(shù)的圖象過點(0,3),且
得
(Ⅱ)依題意 且
解得
所以
(Ⅲ).可轉(zhuǎn)化為: 有三個不等實根,即: 與軸有三個交點;
,
0 | - | 0 | |||
增 | 極大值 | 減 | 極小值 | 增 |
.當(dāng)且僅當(dāng)時,有三個交點,
故而, 為所求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)P是圓上的動點,點D是P在x軸上的投影,M為線段PD上一點,且,
(1)當(dāng)P在圓上運(yùn)動時,求點M的軌跡C的方程;
(2)求過點(3,0)且斜率為的直線被軌跡C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是自然對數(shù)的底數(shù).
(1)討論函數(shù)在上的單調(diào)性;
(2)當(dāng)時,若存在,使得,求實數(shù)的取值范圍.(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,橢圓:()的離心率是,拋物線:的焦點是的一個頂點.
(1)求橢圓的方程;
(2)設(shè)是上的動點,且位于第一象限,在點處的切線與交于不同的兩點,,線段的中點為,直線與過且垂直于軸的直線交于點.
(i)求證:點在定直線上;
(ii)直線與軸交于點,記△的面積為,△的面積為,求的最大值及取得最大值時點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若滿足:對任意的,都有恒成立,試確定實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)求函數(shù)在區(qū)間上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線:與直線()交于,兩點.
(1)當(dāng)時,分別求在點和處的切線方程;
(2)軸上是否存在點,使得當(dāng)變動時,總有?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com