精英家教網(wǎng)如圖,在橢圓C中,點F1是左焦點,A(a,0),B(0,b)分別為右頂點和上頂點,點O為橢圓的中心.又點P在橢圓上,且滿足條件:OP∥AB,點H是點P在x軸上的射影.
(1)求證:當a取定值時,點H必為定點;
(2)如果點H落在左頂點與左焦點之間,試求橢圓離心率的取值范圍;
(3)如果以O(shè)P為直徑的圓與直線AB相切,且凸四邊形ABPH的面積等于3+
2
,求橢圓的方程.
分析:(1)由kAB=-
b
a
,OP∥AB,得lop:y=-
b
a
x
,代入橢圓方程
x2
a2
+
y2
b2
=1
,得x2=
a2
2
,由此能夠證明當a取定值時,點H必為定點.
(2)由點H落在左頂點與左焦點之間,知只有H(-
2
2
a,0)
,且-a<-
2
2
a<-c
,由此能求出橢圓離心率的取值范圍.
(3)以O(shè)P為直徑的圓與直線AB相切等價于點O到直線AB的距離等于
1
2
|OP|
.由條件設(shè)直線AB:
x
a
+
y
b
=1
,點O到直線AB的距離d=
ab
a2+b2
,又|OP|=
2a2+2b2
2
,所以
ab
a2+b2
=
2a2+2b2
4
,再由SABPH=SABO+SOBPH=
1
2
ab+
1
2
(
2
2
b+b)
2
2
a=
3+
2
4
ab=3+
2
,
能夠得到所求橢圓方程.
解答:精英家教網(wǎng)解:(1)由kAB=-
b
a
,OP∥AB,得lop:y=-
b
a
x
,
代入橢圓方程
x2
a2
+
y2
b2
=1
,得x2=
a2
2
,
P(-
2
2
a,
2
2
b)
P(
2
2
a,-
2
2
b)
,
∵PH⊥x軸,∴H(-
2
2
a,0)
H(
2
2
a,0)
,
∵a為定值,∴H為定點;(4分)
(2)∵點H落在左頂點與左焦點之間,
∴只有H(-
2
2
a,0)
,且-a<-
2
2
a<-c

可解得0<e<
2
2
;(4分)
(3)以O(shè)P為直徑的圓與直線AB相切等價于點O到直線AB的距離等于
1
2
|OP|

由條件設(shè)直線AB:
x
a
+
y
b
=1

則點O到直線AB的距離d=
ab
a2+b2
,又|OP|=
2a2+2b2
2
,
ab
a2+b2
=
2a2+2b2
4
a2+b2=2
2
ab

又由SABPH=SABO+SOBPH=
1
2
ab+
1
2
(
2
2
b+b)
2
2
a=
3+
2
4
ab=3+
2
,
得ab=4.②由①②解得a2=4(
2
+1)
,b2=4(
2
-1)

所以所求橢圓方程為:
x2
4(
2
+1)
+
y2
4(
2
-1)
=1
.(6分)
點評:本題考查定點的證明、離心率取值范圍的確定和橢圓方程的求法,解題時要認真審題,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在橢圓C:
x2
4
+
y2
3
=1
中,F(xiàn)1,F(xiàn)2分別為橢圓C的左右兩個焦點,P為橢圓上且在第一象限內(nèi)的點,△PF1F2的重心為G,內(nèi)心為I.
(1)求證:IG∥F1F2
(2)已知A為橢圓C的左頂點,直線l過右焦點F2與橢圓C交于M,N兩點,若AM,AN的斜率k1,k2滿足k1+k2=-
1
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在橢圓C中,點F1是左焦點,A(a,0),B(0,b)分別為右頂點和上頂點,點O為橢圓的中心.又點P在橢圓上,且滿足條件:OP∥AB,點H是點P在x軸上的射影.
(1)求證:當a取定值時,點H必為定點;
(2)如果點H落在左頂點與左焦點之間,試求橢圓離心率的取值范圍;
(3)如果以O(shè)P為直徑的圓與直線AB相切,且凸四邊形ABPH的面積等于數(shù)學公式,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年湖北省武漢市高三四月調(diào)考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,在橢圓C:中,F(xiàn)1,F(xiàn)2分別為橢圓C的左右兩個焦點,P為橢圓上且在第一象限內(nèi)的點,△PF1F2的重心為G,內(nèi)心為I.
(1)求證:IG∥F1F2;
(2)已知A為橢圓C的左頂點,直線l過右焦點F2與橢圓C交于M,N兩點,若AM,AN的斜率k1,k2滿足,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年浙江省杭州市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

如圖,在橢圓C中,點F1是左焦點,A(a,0),B(0,b)分別為右頂點和上頂點,點O為橢圓的中心.又點P在橢圓上,且滿足條件:OP∥AB,點H是點P在x軸上的射影.
(1)求證:當a取定值時,點H必為定點;
(2)如果點H落在左頂點與左焦點之間,試求橢圓離心率的取值范圍;
(3)如果以O(shè)P為直徑的圓與直線AB相切,且凸四邊形ABPH的面積等于,求橢圓的方程.

查看答案和解析>>

同步練習冊答案