【題目】己知O為坐標(biāo)原點(diǎn),雙曲線 (a>0,b>0)的兩條漸近線分別為l1 , l2 , 右焦點(diǎn)為F,以O(shè)F為直徑作圓交l1于異于原點(diǎn)O的點(diǎn)A,若點(diǎn)B在l2上,且 =2 ,則雙曲線的離心率等于( )
A.
B.
C.2
D.3
【答案】B
【解析】解:雙曲線的漸近線方程l1 , y= x,l2 , y=﹣ x, F(c,0),
圓的方程為(x﹣ )2+y2= ,將y= x代入(x﹣ )2+y2= ,
得(x﹣ )2+( x)2= ,
即 x2=cx,則x=0或x= ,當(dāng)x= 時(shí),y═ = ,即A( , ),
設(shè)B(m,n),則n=﹣ m,
則 =(m﹣ ,n﹣ ), =( ﹣c, ),
∵ =2 ,
∴(m﹣ ,n﹣ )=2( ﹣c, )
則m﹣ =2( ﹣c),n﹣ =2 ,
即m= ﹣2c,n= ,
即 =﹣ ( ﹣2c)=﹣ + ,
即 = ,
則c2=3a2 ,
則 = ,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中, ,點(diǎn)D在線段BC上.
(1)當(dāng)BD=AD時(shí),求 的值;
(2)若AD是∠A的平分線, ,求△ADC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在Rt△AOB中, , , ,AB邊上的高線為OD,點(diǎn)E位于線段OD上,若 ,則向量 在向量 上的投影為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)解不等式f(x)≤5;
(2)若不等式m2﹣m<f(x),x∈R都成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的 中點(diǎn).
(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,點(diǎn)M在線段PC上,試
確定點(diǎn)M的位置,使二面角M﹣BQ﹣C大小為60°,并求出 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P為函數(shù)y=2lnx的圖像與圓M:(x﹣3)2+y2=r2的公共點(diǎn),且它們?cè)邳c(diǎn)P處有公切線,若二次函數(shù)y=f(x)的圖像經(jīng)過點(diǎn)O,P,M,則y=f(x)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2 .
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g( )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合Rn={X|X=(x1 , x2 , …,xn),xi∈{0,1},i=1,2,…,n}(n≥2).對(duì)于A=(a1 , a2 , …,an)∈Rn , B=(b1 , b2 , …,bn)∈Rn , 定義A與B之間的距離為d(A,B)=|a1﹣b1|+|a2﹣b2|+…|an﹣bn|= .
(Ⅰ)寫出R2中的所有元素,并求兩元素間的距離的最大值;
(Ⅱ)若集合M滿足:MR3 , 且任意兩元素間的距離均為2,求集合M中元素個(gè)數(shù)的最大值并寫出此時(shí)的集合M;
(Ⅲ)設(shè)集合PRn , P中有m(m≥2)個(gè)元素,記P中所有兩元素間的距離的平均值為 ,證明 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com