精英家教網 > 高中數學 > 題目詳情
已知拋物線C:y2=2px(p>0)上一動點M,設M到拋物線C外一定點A(6,12)的距離為d1,M到定直線l:x=-p的距離為d2,若d1+d2的最小值為14,則拋物線C的方程為______.
由于拋物線C:y2=2px(p>0)上一動點M,如圖示,
則M到拋物線的焦點F(
p
2
,0)的距離等于M到準線:x=-
1
2
p的距離,
又由于M到定直線l:x=-p的距離為M到準線:x=-
1
2
p的距離與
p
2
的和,
則d2=MQ=MF+
p
2
,
故d1+d2=MA+MF+
p
2
的最小值為14,
由圖知,當M與P′重合時,取最小值14,
則14=AF+
p
2
=
(6-
p
2
)2+122
+
p
2
,解得p=2,
則拋物線C的方程為y2=4x.
故答案為:y2=4x.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

拋物線上到直線的距離最短的點的坐標是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線頂點在原點,焦點在坐標軸上,又知此拋物線上一點A(m,-3)到焦點F的距離是5,求拋物線的方程及m的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

△AOB是邊長為1的等邊三角形,O是原點,AB⊥x軸,以O為頂點,且過A,B的拋物線的方程是( 。
A.y2=
3
6
x
B.y2
3
6
x
C.y2=-
3
6
x
D.y2
3
3
x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

根據下列條件,求出拋物線的標準方程.
(1)過點(-3,2).
(2)焦點在x軸上,且拋物線上一點A(3,m)到焦點的距離為5.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線的焦點在x軸上,拋物線上的P(-3,m)到焦點的距離為5,則拋物線的標準方程為( 。
A.y2=4xB.y2=8xC.y2=-4xD.y2=-8x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線W:y=ax2經過點A(2,1),過A作傾斜角互補的兩條不同直線l1,l2
(Ⅰ)求拋物線W的方程及準線方程;
(Ⅱ)當直線l1與拋物線W相切時,求直線l2的方程
(Ⅲ)設直線l1,l2分別交拋物線W于B,C兩點(均不與A重合),若以線段BC為直徑的圓與拋物線的準線相切,求直線BC的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知F是拋物線y2=4x的焦點,A,B是拋物線上兩點,△AFB是正三角形,則該正三角形的邊長為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知拋物線y=x2上有一定點A(-1,1)和兩動點P、Q,當PA⊥PQ時,點Q的橫坐標取值范圍是(  )
A.(-∞,-3]B.[1,+∞)C.[-3,1]D.(-∞,-3]∪[1,+∞)

查看答案和解析>>

同步練習冊答案