(2012•寶雞模擬)觀察等式:sin230°+cos260°+sin30°cos60°=
3
4
,sin220°+cos250°+sin20°cos50°=
3
4
sin215°+cos245°+sin15°cos45°=
3
4
,…
,由此得出以下推廣命題不正確的是

sin2α+cos2β+sinαcosβ=
3
4

sin2(α-30°)+cos2α+sin(α-30°)cosα=
3
4
;
sin2(α-15°)+cos2(α+15°)+sin(α-15°)cos(α+15°)=
3
4

sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4
分析:觀察所給的等式,等號(hào)左邊角之間的關(guān)系,規(guī)律應(yīng)該是sin2α+cos2(30°+α)+sinαcos(30°+α)右邊的式子:
3
4
,寫(xiě)出結(jié)果即可進(jìn)行判斷.
解答:解:觀察等式:
①sin230°+cos260°+sin30°cos60°=
3
4

②sin220°+cos250°+sin20°cos50°=
3
4

③sin215°+cos245°+sin15°cos45°=
3
4
,…,
照此規(guī)律,可以得到的一般結(jié)果應(yīng)該是
sin2α+cos2(30°+α)+sinαcos(30°+α)右邊的式子:
3
4

故得出的推廣命題為:sin2α+cos2(30°+α)+sinαcos(30°+α)=
3
4

對(duì)照選項(xiàng)得:不正確的是①.
故答案為①.
點(diǎn)評(píng):本題主要考查了歸納推理,解題的關(guān)鍵是發(fā)現(xiàn)兩角之間的關(guān)系,同時(shí)考查了分析問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如下圖所示:則函數(shù)f(x)的解析式為
f(x)=
2
sin(
π
8
x+
π
4
f(x)=
2
sin(
π
8
x+
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)已知實(shí)數(shù)x,y滿(mǎn)足不等式組
y≤x
x+y≤2
y≥0
,則目標(biāo)函數(shù)z=x+3y的最大值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)若函數(shù)f(x)=
2x,(x<3)
2x-m,(x≥3)
,且f(f(2))>7,則實(shí)數(shù)m的取值范圍為
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)設(shè)函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期;
(2)記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若f(A)=1,a=1,c=
3
,求b值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)已知等差數(shù)列{an}的前三項(xiàng)依次為a-1,a+1,2a+3,則此數(shù)列的通項(xiàng)公式an等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案