精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓,四點,中恰有三個點在橢圓C上,左、右焦點分別為F1、F2

1)求橢圓C的方程;

2)過左焦點F1且不平行坐標軸的直線l交橢圓于PQ兩點,若PQ的中點為N,O為原點,直線ON交直線x=﹣3于點M,求的最大值.

【答案】1;(2

【解析】

1)由橢圓的對稱性可得P2P3,P4在橢圓上,進而求出橢圓的方程;

2)由(1)可得F1的坐標,由題意設直線l的方程與橢圓聯立,求出兩根之和及兩根之積,求出PQ的中點N的坐標,再由直線ONx=﹣3,求出M的坐標,進而求出的表達式,換元由二次函數配方可得其最大值.

解:(1)由橢圓的對稱性易知,關于y軸對稱,

一定都在橢圓上.所以一定不在橢圓上.

根據題意也在橢圓上,

,帶入橢圓方程,解得橢圓方程為;

2)設直線l方程為ykx+2)(k≠0),Px1,y1),Qx2,y2),

聯立,可得(3k2+1x2+12k2x+12k260;

24k2+1)>0,且,,

PQ的中點Nx0,y0),則,

N坐標為,,;

因此直線ON的方程為,從而點M,又F1(﹣2,0),

所以,令u3k2+1≥1,

,

因此當u4,即k±1hu)最大值為3

所以取得最大值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】定義在上的函數同時滿足下列兩個條件:①對任意的恒有成立;②當時,.記函數,若函數恰有兩個零點,則實數的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,bc.已知a2+c2b2ac.

1)求cosBtan2B的值;

2)若b3A,求c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的圓柱中,AB為圓的直徑,的兩個三等分點,EA,FCGB都是圓柱的母線.

1)求證:平面ADE;

2)設BC=1,已知直線AF與平面ACB所成的角為30°,求二面角AFBC的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我們打印用的A4紙的長與寬的比約為,之所以是這個比值,是因為把紙張對折,得到的新紙的長與寬之比仍約為,紙張的形狀不變.已知圓柱的母線長小于底面圓的直徑長(如圖所示),它的軸截面ABCD為一張A4紙,若點E為上底面圓上弧AB的中點,則異面直線DEAB所成的角約為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某客戶準備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯安裝,再與一級過濾器串聯安裝.

其中每一級過濾都由核心部件濾芯來實現在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200.現需決策安裝凈水系統(tǒng)的同時購買濾芯的數量,為此參考了根據100套該款凈水系統(tǒng)在十年使用期內更換濾芯的相關數據制成的圖表,其中表1是根據100個一級過濾器更換的濾芯個數制成的頻數分布表,圖2是根據200個二級過濾器更換的濾芯個數制成的條形圖.

1:一級濾芯更換頻數分布表

一級濾芯更換的個數

8

9

頻數

60

40

2:二級濾芯更換頻數條形圖

100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.

1)求一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數恰好為16的概率;

2)記表示該客戶的凈水系統(tǒng)在使用期內需要更換的二級濾芯總數,求的分布列及數學期望;

3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數.,且,以該客戶的凈水系統(tǒng)在使用期內購買各級濾芯所需總費用的期望值為決策依據,試確定的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,,其中,是自然對數的底數.

1)若上存在兩個極值點,求的取值范圍;

2)若,函數與函數的圖象交于,,,且線段的中點為,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,,.已知分別是的中點.沿折起,使的位置且二面角的大小是60°,連接,如圖:

1)證明:平面平面

2)求平面與平面所成二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,證明函數在區(qū)間上有三個極值點;

2)若對于恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案