【題目】在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:
(1)證明:平面平面
(2)求平面與平面所成二面角的大小.
【答案】(1)證明見解析(2)45°
【解析】
(1)設的中點為,連接,設的中點為,連接,,從而即為二面角的平面角,,推導出,從而平面,則,即,進而平面,推導四邊形為平行四邊形,從而,平面,由此即可得證.
(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標系,利用向量法求出平面與平面所成二面角的大小.
(1)∵是的中點,∴.
設的中點為,連接.
設的中點為,連接,.
易證:,,
∴即為二面角的平面角.
∴,而為的中點.
易知,∴為等邊三角形,∴.①
∵,,,∴平面.
而,∴平面,∴,即.②
由①②,,∴平面.
∵分別為的中點.
∴四邊形為平行四邊形.
∴,平面,又平面.
∴平面平面.
(2)如圖,建立空間直角坐標系,設.
則,,,,
顯然平面的法向量,
設平面的法向量為,,,
∴,∴.
,
由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.
∴平面與平面所成的二面角大小為45°.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系.xOy中,曲線C1的參數(shù)方程為( 為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標方程;
(2)已知曲線C2的極坐標方程為,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4,求α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了提高學生的身體素質(zhì),某校高一、高二兩個年級共336名學生同時參與了“我運動,我健康,我快樂”的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數(shù)據(jù)(單位:個/分鐘):
(1)求高一、高二兩個年級各有多少人?
(2)設某學生跳繩個/分鐘,踢毽個/分鐘.當,且時,稱該學生為“運動達人”.
①從高二年級的學生中任選一人,試估計該學生為“運動達人”的概率;
②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為“運動達人”的人數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市政府為了引導居民合理用水,決定全面實施階梯水價,居民用水原則上以住宅為單位(一套住宅為一戶).
階梯級別 | 第一階梯 | 第二階梯 | 第三階梯 |
月用水范圍(噸) |
為了了解全市居民月用水量的分布情況,通過抽樣,獲得了戶居民的月用水量(單位:噸),得到統(tǒng)計表如下:
居民用水戶編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用水量(噸) | 7 | 8 | 8 | 9 | 10 | 11 | <>13 | 14 | 15 | 20 |
(1)若用水量不超過噸時,按元/噸計算水費;若用水量超過噸且不超過噸時,超過噸部分按元/噸計算水費;若用水量超過噸時,超過噸部分按元/噸計算水費.試計算:若某居民用水噸,則應交水費多少元?
(2)現(xiàn)要在這戶家庭中任意選取戶,求取到第二階梯水量的戶數(shù)的分布列與期望;
(3)用抽到的戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取戶,若抽到戶月用水量為第一階梯的可能性最大,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線,分別交直線于,兩點. 求證:,兩點的縱坐標之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知非零實數(shù),,不全相等,則下列說法正確的個數(shù)是( )
(1)如果,,成等差數(shù)列,則,,能構(gòu)成等差數(shù)列
(2)如果,,成等差數(shù)列,則,,不可能構(gòu)成等比數(shù)列
(3)如果,,成等比數(shù)列,則,,能構(gòu)成等比數(shù)列
(4)如果,,成等比數(shù)列,則,,不可能構(gòu)成等差數(shù)列
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若對于任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在圓:上運動,點在軸上的投影為,動點滿足.
(1)求動點的軌跡的方程;
(2)過點的動直線與曲線交于、兩點,問:在軸上是否存在定點使得的值為定值?若存在,求出定點的坐標及該定值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com