【題目】設(shè)函數(shù)的最小正周期為,且其圖象關(guān)于直線對(duì)稱,則在下面結(jié)論中正確的個(gè)數(shù)是__________.
①圖象關(guān)于點(diǎn)對(duì)稱;②圖象關(guān)于點(diǎn)對(duì)稱;③在上是增函數(shù);④在上是增函數(shù);⑤由可得必是的整數(shù)倍.
【答案】2
【解析】
根據(jù)函數(shù)的周期和對(duì)稱軸可以得到解析式,然后對(duì)5個(gè)結(jié)論分別進(jìn)行判斷,從而得到答案.
函數(shù)的最小正周期為,
所以,得到,
得到,
令,,
代入對(duì)稱軸,得,,
因?yàn)?/span>,所以,得,
所以函數(shù)解析式為,
令,,得,,
所以對(duì)稱中心的坐標(biāo)為,,
所以,①圖象關(guān)于點(diǎn)對(duì)稱,錯(cuò)誤;
②圖象關(guān)于點(diǎn)對(duì)稱,正確;
令,,
解得,,
所以函數(shù)的單調(diào)遞增區(qū)間為,,
所以③在上是增函數(shù),錯(cuò)誤;
④在上是增函數(shù),正確;
由函數(shù)對(duì)稱中心的坐標(biāo)為,,
可得相鄰零點(diǎn)的差是的整數(shù)倍,
所以⑤由可得必是的整數(shù)倍,錯(cuò)誤.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有6張卡片,上面分別寫著如下六個(gè)定義域?yàn)?/span>的函數(shù):, ,, ,,從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個(gè)新函數(shù),所得新函數(shù)為奇函數(shù)的概率是 __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由(1)中的線性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過(guò)兩顆,則認(rèn)為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場(chǎng)有土地10萬(wàn)畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計(jì)該農(nóng)場(chǎng)種植小麥所獲得的收益.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上函數(shù),若函數(shù)關(guān)于點(diǎn)對(duì)稱,且則關(guān)于x的方程()有n個(gè)不同的實(shí)數(shù)解,則n的所有可能的值為( )
A.2B.4
C.2或4D.2或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列向量組中,可以把向量=(3,2)表示出來(lái)的是( )
A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)
C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓:的左、右焦點(diǎn)分別為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),問(wèn)在軸上是否存在定點(diǎn),使得為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司決定每月給推銷員確定個(gè)具體的銷售目標(biāo),對(duì)推銷員實(shí)行目標(biāo)管理.銷售目標(biāo)確定的適當(dāng)與否,直接影響公司的經(jīng)濟(jì)效益和推銷員的工作積極性,為此,該公司當(dāng)月隨機(jī)抽取了50位推銷員上個(gè)月的月銷售額(單位:萬(wàn)元),繪制成如圖所示的頻率分布直方圖.
(1)①根據(jù)圖中數(shù)據(jù),求出月銷售額在小組內(nèi)的頻率.
②根據(jù)直方圖估計(jì),月銷售目標(biāo)定為多少萬(wàn)元時(shí),能夠使70%的推銷員完成任務(wù)?并說(shuō)明理由.
(2)該公司決定從月銷售額為和的兩個(gè)小組中,選取2位推銷員介紹銷售經(jīng)驗(yàn),求選出的推銷員來(lái)自同一個(gè)小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)與,若存在實(shí)數(shù)滿足,且,則稱為的一個(gè)點(diǎn).
(1)證明:函數(shù)與不存在的點(diǎn);
(2)若函數(shù)與存在的點(diǎn),求的范圍;
(3)已知函數(shù),證明:存在正實(shí)數(shù),對(duì)于區(qū)間內(nèi)任意一個(gè)皆是函數(shù)的點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)工會(huì)利用“健步行”開(kāi)展明年健步走積分獎(jiǎng)勵(lì)活動(dòng).會(huì)員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分).為了解會(huì)員的健步走情況,工會(huì)在某天從系統(tǒng)中隨機(jī)抽取了1000名會(huì)員,統(tǒng)計(jì)了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為,,,,,,,,九組,整理得到如下頻率分布直方圖:
(1)從當(dāng)天步數(shù)在,,的會(huì)員中按分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人積分之和不少于220分的概率;
(2)求該組數(shù)據(jù)的中位數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com