【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程;
(2)若由(1)中的線(xiàn)性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過(guò)兩顆,則認(rèn)為線(xiàn)性回歸方程是可靠的,試判斷(1)中得到的線(xiàn)性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場(chǎng)有土地10萬(wàn)畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線(xiàn)性回歸方程估計(jì)該農(nóng)場(chǎng)種植小麥所獲得的收益.
附:在線(xiàn)性回歸方程中,.
【答案】(1)(2)見(jiàn)解析(3)7950萬(wàn)元
【解析】
(1)先進(jìn)行數(shù)據(jù)處理:每個(gè)溫差值減去12,每個(gè)發(fā)芽數(shù)減去86,得到新的數(shù)據(jù)表格,求出的值,最后求出關(guān)于的線(xiàn)性回歸方程;
(2)根據(jù)線(xiàn)回歸方程,分別計(jì)算當(dāng)時(shí),當(dāng)時(shí),它們的估計(jì)值,然后判斷(1)中得到的線(xiàn)性回歸方程是否可靠;
(3)當(dāng)時(shí),根據(jù)線(xiàn)性回歸方程計(jì)算出的值,然后計(jì)算出發(fā)芽率以及收益.
數(shù)據(jù)處理;.
(1)
-1 | 0 | 1 | ||
-1 | 0 | 4 |
此時(shí):,,,,
∴,∴.
(2)當(dāng)時(shí):,符合,
當(dāng)時(shí):,符合,
前兩組數(shù)據(jù)均符合題意,該回歸直線(xiàn)方程可靠.
(3)當(dāng)時(shí),.
發(fā)芽率,∴.
收益:(萬(wàn)畝)(萬(wàn)元).
種植小麥?zhǔn)找鏋?950萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
討論函數(shù)的單調(diào)性;
若關(guān)于x的方程有唯一解,且,,求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線(xiàn)在處的切線(xiàn)與直線(xiàn)垂直,求實(shí)數(shù)的值;
(2)若上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶(hù)每月用水不超過(guò)4噸時(shí),每噸為元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)部分每噸為元,每月甲、乙兩戶(hù)共交水費(fèi)元,已知甲、乙兩戶(hù)該月用水量分別為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)若甲、乙兩戶(hù)該月共交水費(fèi)元,分別求出甲、乙兩戶(hù)該月的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的函數(shù)滿(mǎn)足:對(duì)任意的實(shí)數(shù)都成立,當(dāng)且僅當(dāng)時(shí)取等號(hào),則稱(chēng)函數(shù)是上的函數(shù),已知函數(shù)具有性質(zhì):(,)對(duì)任意的實(shí)數(shù)()都成立,當(dāng)且僅當(dāng)時(shí)取等號(hào).
(1)試判斷函數(shù)(且)是否是上的函數(shù),說(shuō)明理由;
(2)求證:是上的函數(shù),并求的最大值(其中、、是△三個(gè)內(nèi)角);
(3)若定義域?yàn)?/span>,
① 是奇函數(shù),證明:不是上的函數(shù);
② 最小正周期為,證明:不是上的函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A、B、C的對(duì)邊分別為a、b、c.已知cosC=.
(1)若,求△ABC的面積;
(2)設(shè)向量,,且,求sin(B-A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),f(x)=-mx2-m+ln(1-m),(m<1).
(Ⅰ)當(dāng)m=時(shí),求f(x)的極值;
(Ⅱ)證明:函數(shù)f(x)有且只有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列與中,,,數(shù)列的前項(xiàng)和滿(mǎn)足,.
(1)求,,,的值,猜測(cè)的通項(xiàng)公式,并證明之.
(2)求數(shù)列與的通項(xiàng)公式;
(3)設(shè),.證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com