已知甲箱中只放有x個紅球與y個白球,乙箱中只放有2個紅球、1個白球與1個黑球(球除顏色外,無其它區(qū)別). 若甲箱從中任取2個球, 從乙箱中任取1個球.
(Ⅰ)記取出的3個球的顏色全不相同的概率為P,求當P取得最大值時的值;
(Ⅱ)當時,求取出的3個球中紅球個數(shù)的期望.
(I) .
(II)紅球個數(shù)的分布列為
 
.

試題分析:(I)由題意知
當且僅當時等號成立,所以,當取得最大值時.
(II)當時,即甲箱中有個紅球與個白球,所以的所有可能取值為
,,,

所以紅球個數(shù)的分布列為
 
于是.
點評:典型題,統(tǒng)計中的抽樣方法,頻率直方圖,概率計算及分布列問題,是高考必考內(nèi)容及題型。獨立事件的概率的計算問題,關鍵是明確事件、用好公式。本題綜合性較強,特別是與不等式相結合,有新意。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

為增強市民的節(jié)能環(huán)保意識,某市面向全市征召義務宣傳志愿者.從符合條件的500名志愿者中
隨機抽取100名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)間是:
.
(I)求圖中的值并根據(jù)頻率分布直方圖估計這500名志愿者中年齡在歲的人數(shù);
(II)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場的宣傳活動,再從這20名中采用簡單隨機抽樣方法選取3名志愿者擔任主要負責人.記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某班從6名班干部(其中男生4人,女生2人)中選3人參加學校學生會的干部競選.
(1)設所選3人中女生人數(shù)為,求的分布列及數(shù)學期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是一個離散型隨機變量,其分布列如右表:則q=                
ξ
-1
0
1
P
0.5
1q
q2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在某社區(qū)舉辦的《有獎知識問答比賽》中,甲、乙、丙三人同時回答某一道題,已知甲回答對這道題的概率是,甲、丙二人都回答錯的概率是,乙、丙二人都回答對的概率是
(Ⅰ)求乙、丙二人各自回答對這道題的概率;
(Ⅱ)設乙、丙二人中回答對該題的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知隨機變量的分布列如下表,隨機變量的均值,則的值為(    )

0
1
2




A.0.3      B.   C.      D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某校為宣傳縣教育局提出的“教育發(fā)展,我的責任”教育實踐活動,要舉行一次以“我
為教育發(fā)展做什么”為主題的的演講比賽,比賽分為初賽、復賽、決賽三個階段進行,已知
某選手通過初賽、復賽、決賽的概率分別是,且各階段通過與否相互獨立.
(I)求該選手在復賽階段被淘汰的概率;
(II)設該選手在比賽中比賽的次數(shù)為,求的分布列、數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設隨機變量X的概率分布為
X
1
2
3
4
P

m


則P(|X-3|=1)=     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設隨機變量,且,則實數(shù)的值為 (   )
A.10B.6  C.8 D.4

查看答案和解析>>

同步練習冊答案