設(shè)是一個離散型隨機變量,其分布列如右表:則q=                
ξ
-1
0
1
P
0.5
1q
q2

試題分析:由分布列性質(zhì)可得
點評:在分布列中各隨機變量概率值均大于等于零,所有概率之和為1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋子中裝有7個小球,其中紅球4個,編號分別為1,2,3,4,黃球3個,編號分別為2,4,6,從袋子中任取4個小球(假設(shè)取到任一小球的可能性相等).
(1)求取出的小球中有相同編號的概率;
(2)記取出的小球的最大編號為,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

德陽中學(xué)數(shù)學(xué)競賽培訓(xùn)共開設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門合格,則能取得參加數(shù)學(xué)競賽復(fù)賽的資格,現(xiàn)有甲、乙、丙三位同學(xué)報名參加數(shù)學(xué)競賽培訓(xùn),每一位同學(xué)對這四門課程考試是否合格相互獨立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨立,
課    程
初等代數(shù)
初等幾何
初等數(shù)論
微積分初步
合格的概率




(1)求甲同學(xué)取得參加數(shù)學(xué)競賽復(fù)賽的資格的概率;
(2)記表示三位同學(xué)中取得參加數(shù)學(xué)競賽復(fù)賽的資格的人數(shù),求的分布列及期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

近幾年來,我國許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進行人工降雨。現(xiàn)由天氣預(yù)報得知,某地在未來3天的指定時間的降雨概率是:前2天均為50%,后1天為80%.3天內(nèi)任何一天的該指定時間沒有降雨,則在當天實行人工降雨,否則,當天不實施人工降雨.求不需要人工降雨的天數(shù)x的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知離散型隨機變量的的分布列如右表,則(  )








A.            B.     
C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知甲箱中只放有x個紅球與y個白球,乙箱中只放有2個紅球、1個白球與1個黑球(球除顏色外,無其它區(qū)別). 若甲箱從中任取2個球, 從乙箱中任取1個球.
(Ⅰ)記取出的3個球的顏色全不相同的概率為P,求當P取得最大值時的值;
(Ⅱ)當時,求取出的3個球中紅球個數(shù)的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中的微量元素,的含量(單位:毫克)下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號
1
2
3
4
5

160
178
166
175
180

75
80
77
70
81
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)若為次品,從乙廠抽出的上述5件產(chǎn)品中,有放回的隨機抽取1件產(chǎn)品,抽到次品則停止抽取,否則繼續(xù)抽取,直到抽出次品為止,但抽取次數(shù)最多不超過3次,求抽取次數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知某一隨機變量x的概率分布如下,且=5.9,則a的值為(     )

4

9
p
0.5
0.2
b
A.5              B. 6             C.7                D. 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機變量的分布列=      

查看答案和解析>>

同步練習(xí)冊答案