【題目】如圖,在長方體ABCDA1B1C1D1中,AB=AA1=1,E為BC中點.

(1)求證:C1D⊥D1E;

(2)在棱AA1上是否存在一點M,使得BM∥平面AD1E?若存在,求的值,若不存在,說明理由;

(3)若二面角B1AED1的大小為90°,求AD的長.

【答案】見解析

【解析】

解:(1)證明:以D為坐標原點,建立如圖所示的空間直角坐標系Dxyz,

設AD=a,則D(0,0,0),A(a,0,0),B(a,1,0),B1(a,1,1),C1(0,1,1),D1(0,0,1),E,∴=(0,-1,-1),,

∴C1D⊥D1E。

(2)設=h,則M(a,0,h),

=(0,-1,h),=(-a,0,1),

設平面AD1E的法向量為n=(x,y,z),

∴平面AD1E的一個法向量為n=(2,a,2a),

∵BM∥平面AD1E,

⊥n,即·n=2ah-a=0,∴h=

即在AA1上存在點M,使得BM∥平面AD1E,此時。

(3)連接AB1,B1E,設平面B1AE的法向量為m=(x′,y′,z′),,=(0,1,1),

∴平面B1AE的一個法向量為m=(2,a,-a).

∵二面角B1AED1的大小為90°,

∴m⊥n,∴m·n=4+a2-2a2=0,

∵a>0,∴a=2,即AD=2。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)當時,上恒成立,求實數(shù)的取值范圍;

(2)當時,若函數(shù)上恰有兩個不同的零點,求實數(shù)的取值范圍;

(3)是否存在常數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的5道題.規(guī)定每次考試都從備選的10道題中隨機抽出3道題進行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,至少得15分才能入選.

I)求乙得分的分布列和數(shù)學期望;

II)求甲、乙兩人中至少有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos xsin 2x,下列結(jié)論中正確的是________(填入正確結(jié)論的序號).

①y=f(x)的圖象關(guān)于點(2π,0)中心對稱;

②y=f(x)的圖象關(guān)于直線x=π對稱;

③f(x)的最大值為;

④f(x)既是奇函數(shù),又是周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,側(cè)面是邊長為的正三角形,且與底面垂直,底面的菱形, 的中點.

(1)求證: ;

(2)求點到平面 的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究“教學方式”對教學質(zhì)量的影響,某高中老師分別用兩種不同的教學方式對入學數(shù)學平均分數(shù)和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學生的數(shù)學期末考試成績.

(1)現(xiàn)從甲班數(shù)學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;

(2)學校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚?/span>列聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關(guān)”.

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的方程為=1(a>b>0),右焦點為F(c,0)(c>0),方程ax2+bx-c=0的兩實根分別為x1,x2,則P(x1,x2)( )

A.必在圓x2+y2=2內(nèi)

B.必在圓x2+y2=2外

C.必在圓x2+y2=1外

D.必在圓x2+y2=1與圓x2+y2=2形成的圓環(huán)之間

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某學校高三年級共800名男生中隨機抽取50人測量身高.據(jù)測量,被測學生身高全部介于155 cm到195 cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165);…;第八組[190,195].如圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

)估計這所學校高三年級全體男生身高在180 cm以上(含180 cm)的人數(shù);

)求第六組、第七組的頻率并補充完整頻率分布直方圖(用虛線標出高度);

(III)若從身高屬于第六組和第八組的所有男生中隨機抽取兩人,記他們的身高分別為x、y,求事件“|x-y|≤5”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

2)若函數(shù)上的最小值為3,求實數(shù)的值.

查看答案和解析>>

同步練習冊答案