【題目】設(shè)個(gè)質(zhì)數(shù)構(gòu)成公差為的等差數(shù)列,且.求證

(1)當(dāng)是質(zhì)數(shù)時(shí),;

(2)當(dāng)時(shí),.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】

(1)因?yàn)?/span> ,,所以,都是大于的質(zhì)數(shù).因此,每一個(gè)都不能被整除.

除時(shí)只能取個(gè)不同的余數(shù),根據(jù)抽屜原理,至少有兩個(gè)數(shù)被除的余數(shù)相同.設(shè)這兩個(gè)數(shù)為、.于是,

能被整除.

,為質(zhì)數(shù),所以,.

因此,.

(2)設(shè)15個(gè)質(zhì)數(shù)構(gòu)成公差為的等差數(shù)列.由于這15個(gè)質(zhì)數(shù)必都是奇數(shù),所以,公差為偶數(shù),即.

由其中的,3個(gè)質(zhì)數(shù)成等差數(shù)列,,根據(jù)(1)中的結(jié)論,得.

,,,5個(gè)質(zhì)數(shù)成等差數(shù)列,,根據(jù)(1)中的結(jié)論,得.

,,可得.

因此,由.為質(zhì)數(shù),所以,.

于是,由7個(gè)質(zhì)數(shù)成等差數(shù)列,,根據(jù)(1)中的結(jié)論,得.

同理,由11個(gè)質(zhì)數(shù)成等差數(shù)列,根據(jù)(1)中的結(jié)論,得.

13個(gè)質(zhì)數(shù)成等差數(shù)列, ,根據(jù)(1)中的結(jié)論,得.

因?yàn)?/span>,所以,,

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C1 (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ.
(1)求C2與C3交點(diǎn)的直角坐標(biāo);
(2)若C2與C1相交于點(diǎn)A,C3與C1相交于點(diǎn)B,求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|)。

(1)求實(shí)數(shù)a,b的值;

(2)若不等式f(2k)>1成立,求實(shí)數(shù)k的取值范圍;

(3)定義在[p,q]上的函數(shù)(x),設(shè)p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得和式恒成立,則稱函數(shù)(x)為在[p,q]上的有界變差函數(shù)試判斷函數(shù)f(x)是否為在[0,4]上的有界變差函數(shù)?若是,求M的最小值;若不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F(2,0),M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△MOF是等腰直角三角形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過(guò)定點(diǎn)( ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB經(jīng)過(guò)⊙O上一點(diǎn)C,⊙O的半徑為3,△AOB是等腰三角形,且C是AB中點(diǎn),⊙O交直線OB于E、D.

(1)證明:直線AB與⊙O相切;
(2)若∠CED的正切值為 ,求OA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).

(1)如果直線過(guò)拋物線的焦點(diǎn),求的值;

(2)如果 ,證明:直線必過(guò)一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集U=R,集合A={x|7﹣6x≤0},集合B={x|y=lg(x+2)},則(UA)∩B等于(
A.(﹣2,
B.( ,+∞)
C.[﹣2,
D.(﹣2,﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形為矩形,平面 // ,, ,點(diǎn)點(diǎn)P在棱上.

(1)求證: ;

(2)若的中點(diǎn),求異面直線所成角的余弦值;

(3)是否存在正實(shí)數(shù),使得,且滿足二面角的余弦值為,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)四年級(jí)男同學(xué)有45名,女同學(xué)有30名,老師按照分層抽樣的方法組建了一個(gè)5人的課外興趣小組.

(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);

(Ⅱ)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案