本試題主要是考查了函數(shù)的奇偶性和單調(diào)性的運用。
(1)證明:由f(x+y)=f(x)+f(y)得f[x+(-x)]=f(x)+f(-x)
即f(x)+f(-x)=f(0),故∴f(x)+f(-x)=0即f(-x)=-f(x)即f(x) 是奇函數(shù),并運用定義法證明單調(diào)性。
(2)∵f(x)在R上單調(diào)遞減,
∴在[-3,3]的最大值為f(-3),最小值為f(3)從而得到。
解:(1)證明:由f(x+y)=f(x)+f(y)得f[x+(-x)]=f(x)+f(-x)
即f(x)+f(-x)="f(0)" ………………………(2分)
∴f(0)+f(0)=f(0)即f(0)=0
∴f(x)+f(-x)=0即f(-x)=-f(x)即f(x) 是奇函數(shù)………………………(4分)
又任取
且
∵則
…………………(6分)
∵
∴
∴
,f(x)是R上的減函數(shù)………………………(8分)
(1)解答:∵f(x)在R上單調(diào)遞減,
∴在[-3,3]的最大值為f(-3),最小值為f(3) ………………(9分)
由f(1)=-2得f(3)=f(1+2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=-6
又f(-3)=-f(3)=6……………(11分)
∴f(x)在[-3,3]的最大值是6,最小值是-6……………………(12分)